2015年深圳市中考数学试题解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

广东省深圳市2015年中考数学试卷一、选择题:1、15的相反数是()A、15B、15C、151D、151考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣15的相反数是15,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2、用科学计数法表示316000000为()A、71016.3B、81016.3C、7106.31D、6106.31考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将316000000用科学记数法表示为:3.16×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】B.3、下列说法错误的是()A、2aaaB、aaa32C、523)(aaD、413aaa考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.解答:解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4、下列图形既是中心对称又是轴对称图形的是()考点:中心对称图形;轴对称图形..分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5、下列主视图正确的是()考点:简单组合体的三视图..分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6、在一下数据90,85,80,80,75中,众数、中位数分别是()A、8075,B、80,80C、85,80D、90,80考点:众数;中位数..分析:首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.解答:解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.点评:(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、解不等式12xx,并把解集在数轴上表示()考点:在数轴上表示不等式的解集;解一元一次不等式..分析:先移项、合并同类项,把x的系数化为1即可.解答:解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.点评:本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8、二次函数)0(2acbxaxy的图像如下图所示,下列说法正确的个数是()○10a;○20b;○30c;○4042acb。A、B、2C、3D、4考点:二次函数图象与系数的关系..专题:数形结合.分析:根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.解答:解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9、如图,AB为⊙O直径,已知为∠DCB=20o,则∠DBA为()A、o50B、o20C、o60D、o70考点:圆周角定理..专题:计算题.分析:先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.解答:解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10、某商品的标价为200元,8折销售仍赚40元,则商品进价为()元。A、140B、120C、160D、100考点:一元一次方程的应用..分析:设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.解答:解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.点评:本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.11、如图,已知⊿ABC,ABBC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()考点:作图—复杂作图..分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.解答:解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.点评:本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:○1⊿ADG≌⊿FDG;○2GB=2AG;○3⊿GDE∽BEF;○4S⊿BEF=572。在以上4个结论中,正确的有()A、B、2C、3D、4考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质..分析:根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.解答:解:由折叠可知,DF=DC=DA,∠DEF=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GFB=×6×8=24,S△BEF=•S△GFB==,④正确.故选:C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题:13、因式分解:2233ba。考点:提公因式法与公式法的综合运用..专题:计算题.分析:原式提取3,再利用平方差公式分解即可.解答:解:原式=3(a2﹣b2)=3(a+b)(a﹣b),故答案为:3(a+b)(a﹣b)点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是。考点:列表法与树状图法..分析:利用树状图法列举出所有可能,看是否能被3整除.找出满足条件的数的个数除以总的个数即可.解答:解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.点评:本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为3的倍数.15、观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳。考点:规律型:图形的变化类..分析:由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.解答:解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.点评:此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.第二行的规律是1,2,4,8,…,故第五个数是16;故第五个图中共有21个太阳。16、如图,已知点A在反比例函数)0(xxky上,作RT⊿ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若⊿BCE的面积为8,则k=。考点:反比例函数系数k的几何意义;相似三角形的判定与性质..分析:根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.解答:解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.点评:本题考查了反比例函

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功