2015年绥化市中考数学试题解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

黑龙江省绥化市2015年中考数学试题一.选择题1.下列图案中,既是中心对称又是轴对称图形的个数有()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.解答:解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是轴对称图形,不是中心对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B.点评:本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.左下图是一些完全相同的小正方体搭成的几何体的三视图。这个几何体只能是()考点:由三视图判断几何体..分析:易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.解答:解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面;故选A.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.3.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.21B.31C.41D.51考点:列表法与树状图法;三角形三边关系..分析:从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.解答:解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,则P(构成三角形)=.故选C.点评:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.4.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×109B.0.34×109C.3.4×1010D.3.4×1011考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000000034=3.4×10﹣10,故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是()考点:余角和补角..分析:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角,据此分别判断出每个选项中∠1+∠2的度数和是不是180°,即可判断出它们是否一定互补.解答:解:如图1,,∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°,∴∠1、∠2互补.如图2,,∠2=∠3,∵∠1+∠3=180°,∴∠1+∠2=180°,∴∠1、∠2互补.如图3,,∵∠2=60°,∠1=30°+90°=120°,∴∠1+∠2=180°,∴∠1、∠2互补.如图4,,∵∠1=90°,∠2=60°,∴∠1+∠2=90°+60°=150°,∴∠1、∠2不互补.故选:D.点评:此题主要考查了余角和补角的性质和应用,要熟练掌握,解答此题的关键是要明确:等角的补角相等.等角的余角相等;并能分别判断出每个选项中的∠1+∠2的度数和是不是180°.6.在实数0、π、722、2、9-中,无理数的个数有()A.1个B.2个C.3个D.4个考点:无理数..分析:根据无理数是无限不循环小数,可得答案.解答:解:π,是无理数,故选:B.点评:本题考查了无理数,无理数是无限不循环小数.7.如图,反比例函数y=xk(x<0)的图象经过点P,则k的值为()A.-6B.-5C.6D.5考点:反比例函数图象上点的坐标特征..分析:根据待定系数法,可得答案.解答:解:函数图象经过点P,k=xy=﹣3×2=﹣6,故选:A.点评:本题考查了反比例函数图象上点的坐标特征,利用待定系数法求函数解析式是解题关键.8.关于x的不等式组1ax>>x的解集为x>1,则a的取值范围是()A.a>1B.a<1C.a≥1D.a≤1考点:不等式的解集..分析:解两个不等式后,根据其解集得出关于a的不等式,解答即可.解答:解:因为不等式组的解集为x>1,所以可得a≤1,故选D点评:此题主要考查了不等式组的解集,关键是根据其解集得出关于a的不等式.9.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A.10B.8C.53D.6考点:轴对称-最短路线问题..分析:根据轴对称求最短路线的方法得出M点位置,进而利用勾股定理及面积法求出CC′的值,然后再证明△BCD∽△C′NC进而求出C′N的值,从而求出MC+NM的值.解答:解:如图所示:由题意可得出:作C点关于BD对称点C′,交BD于点E,连接BC′,过点C′作C′N⊥BC于点N,交BD于点M,连接MC,此时CM+NM=C′N最小,∵AB=10,BC=5,在Rt△BCD中,由勾股定理得:BD==5,∵S△BCD=•BC•CD=BD•CE,∴CE===2,∵CC′=2CE,∴CC′=4,∵NC′⊥BC,DC⊥BC,CE⊥BD,∴∠BNC′=∠BCD=∠BEC=∠BEC′=90°,∴∠CC′N+∠NCC′=∠CBD+∠NCC′=90°,∴∠CC′N=∠CBD,∴△BCD∽△C′NC,∴,即,∴NC′=8,即BM+MN的最小值为8.故选B.点评:此题主要考查了利用轴对称求最短路线以及勾股定理的应用和相似三角形的应用,利用轴对称得出M点与N点的位置是解题的关键.10.如图□ABCD的对角线ACBD交于点O,平分∠BAD交BC于点E,且∠ADC=600,AB=21BC,连接OE.下列结论:①∠CAD=300②S□ABCD=AB•AC③OB=AB④OE=41BC成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形..分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.二、填空题(每题3分,满分33分)11.计算:2-21-4-3_________.考点:实数的运算;负整数指数幂..分析:分别根据负整数指数幂的计算法则、绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=4﹣﹣4=﹣.故答案为:﹣.点评:本题考查的是实数的运算,熟记负整数指数幂的计算法则、绝对值的性质是解答此题的关键.12.在函数y=02x2x1)(中,自变量x的取值范围是____________.考点:函数自变量的取值范围..分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,零指数幂的底数不等于0列式计算即可得解.解答:解:由题意得,x+2>0且x﹣2≠0,解得x>﹣2且x≠2.故答案为:x>﹣2且x≠2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.点A(-3,2)关于x轴的对称点A的坐标为__________.考点:关于x轴、y轴对称的点的坐标..分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.若代数式6265x2xx的值等于0,则x=_________.考点:分式的值为零的条件..分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣5x+6=0,2x﹣6≠0,由x2﹣5x+6=0,得x=2或x=3,由2x﹣6≠0,得x≠3,∴x=2,故答案为2.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是____________.考点:根的判别式;一元二次方程的定义..分析:根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22﹣4×a×(﹣1)<0,然后求出a的取值范围.解答:解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且△=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.16.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为_____________.考点:二次函数图象与几何变换..分析:直接根据“上加下减,左加右减”的原则进行解答.解答:解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.17.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是________.考点:中位数;折线统计图..分析:根据中位数的定义,即可解答.解答:解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功