上海市长宁区2013年中考数学一模试卷一.选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】1.(4分)(2013•长宁区一模)已知△ABC中,∠C=90°,则cosA等于()A.B.C.D.考点:锐角三角函数的定义..分析:根据余弦等于邻边比斜边列式即可得解.解答:解:如图,cosA=.故选D.点评:本题考查了锐角三角函数的定义,是基础题,作出图形更形象直观.2.(4分)(2013•长宁区一模)如图,在平行四边形ABCD中,如果,,那么等于()A.B.C.D.考点:*平面向量..专题:压轴题.分析:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,则可得,然后由三角形法则,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵,∴,∵,∴=+=.故选B.点评:此题考查了平面向量的知识与平行四边形的性质.此题难度不大,注意掌握三角形法则的应用,注意数形结合思想的应用.3.(4分)(2013•长宁区一模)如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形考点:垂径定理;菱形的判定..专题:探究型.分析:先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.解答:解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.点评:本题考查的是垂径定理及菱形的判定定理,全等三角形的判定与性质等知识,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.4.(4分)(2013•长宁区一模)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)考点:二次函数的性质..分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.解答:解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.5.(4分)(2008•茂名)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.考点:相似三角形的判定与性质;等边三角形的性质..专题:压轴题.分析:根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG面积比,再求出S△ABC.解答:解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.点评:本题的关键是利用三等分点求得各相似三角形的相似比.从而求出面积比计算阴影部分的面积.6.(4分)(2013•长宁区一模)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象..专题:压轴题.分析:本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).解答:解:当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选D.点评:主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2013•长宁区一模)已知实数x、y满足,则=2.考点:比例的性质..分析:先用y表示出x,然后代入比例式进行计算即可得解.解答:姐:∵=,∴x=y,∴==2.故答案为:2.点评:本题考查了比例的性质,根据两內项之积等于两外项之积用y表示出x是解题的关键.8.(4分)(2013•长宁区一模)已知,两个相似的△ABC与△DEF的最短边的长度之比是3:1,若△ABC的周长是27,则△DEF的周长为9.考点:相似三角形的性质..分析:由两个相似的△ABC与△DEF的最短边的长度之比是3:1,得出相似比为3:1,即可得其周长为3:1,又由△ABC的周长为27,即可求得△DEF的周长.解答:解:∵两个相似的△ABC与△DEF的最短边的长度之比是3:1,∴周长比为3:1,∵△ABC的周长为27,∴=3,∴△DEF的周长为9.故答案为:9.点评:此题考查了相似三角形的性质.注意掌握相似三角形周长的比等于相似比.9.(4分)(2013•长宁区一模)已知△ABC中,G是△ABC的重心,则=.考点:三角形的重心..分析:设△ABC边AB上的高为h,根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得△ABG边AB上的高线为h,再根据三角形的面积公式计算即可得解.解答:解:设△ABC边AB上的高为h,∵G是△ABC的重心,∴△ABG边AB上的高为h,∴==.故答案为:.点评:本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.10.(4分)(2013•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后,得到新的抛物线解析式为y=﹣x2+2x﹣1.考点:二次函数图象与几何变换..分析:根据“上加下减”的原则进行解答即可.解答:解:根据“上加下减”的原则可知,把抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后所得到的抛物线解析式y=﹣x2+2x+2﹣3=﹣x2+2x﹣1.故答案为:y=﹣x2+2x﹣1.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.11.(4分)(2013•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+c在y轴左侧图象上升(填“左”或“右”).考点:二次函数的性质..分析:由于a=﹣1<0,且抛物线的对称轴为y轴,根据二次函数的性质得到抛物线y=﹣x2+c的开口向下,在对称轴左侧y随x的增大而增大.解答:解:∵a=﹣1<0,∴抛物线y=﹣x2+c的开口向下,且抛物线的对称轴为y轴,∴抛物线y=﹣x2+c在对称轴轴左侧图象上升,y随x的增大而增大.故答案为左.点评:本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上,在对称轴左侧,y随x的增大而减小,在对称轴有侧,y随x的增大而增大;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.12.(4分)(2013•长宁区一模)正八边形绕其中心至少要旋转45度能与原图形重合.考点:旋转对称图形..专题:常规题型.分析:根据正八边形的性质,求出每一条边所对的中心角,就是所要旋转的度数.解答:解:360°÷8=45°.故答案为:45.点评:本题考查了旋转变换图形,求出每一条边所对的中心角即可,比较简单.13.(4分)(2013•长宁区一模)已知圆⊙O的直径为10,弦AB的长度为8,M是弦AB上一动点,设线段OM=d,则d的取值范围是3≤d≤5.考点:垂径定理;勾股定理..专题:探究型.分析:首先过点O作OC⊥AB于C,连接OA,根据垂径定理的即可求得AC的长,又由⊙O的直径为10,求得⊙O的半径OA的长,然后在Rt△OAC中,利用勾股定理即可求得OC的长,继而求得线段OM长度的取值范围.解答:解:过点O作OC⊥AB于C,连接OA,∴AC=AB=×8=4,∵⊙O的直径为10,∴OA=5,在Rt△OAC中,OC===3,∴当M与A或B重合时,OM最长为5,当M与C重合时,OM最短为3,∴线段OP长度的取值范围是:3≤d≤5.故答案为:3≤d≤5.点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.14.(4分)(2013•长宁区一模)如图,某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是5:12.考点:解直角三角形的应用-坡度坡角问题..分析:首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.解答:解:滑行的水平距离是:=120(米),故坡道的坡比是:50:120=5:12.故答案是:5:12.点评:本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.15.(4分)(2013•长宁区一模)两圆相切,圆心距为2cm,一圆半径为6cm,则另一圆的半径为4或8cm.考点:圆与圆的位置关系..分析:分两圆外切和两圆内切情况讨论,很明显根据圆心距为2cm与一圆的半径为6cm不可能外切;而内切时,要分6cm为较长半径和较短半径两种情况考虑.解答:解:设另一圆的半径为r,∵两圆相切,∴两圆可能外切,也有可能内切,∴当两圆外切时,2=6+r,则r=﹣4(舍去);当两圆内切时,2=6﹣r或2=r﹣6,则r=4cm或8cm,∴两圆内切,另一圆的半径为4cm或8cm.点评:本题用到的知识点为:两圆外切,圆心距=两圆半径之和.两圆内切,圆心距=两圆半径之差.16.(4分)(2013•长宁区一模)已知△ABC中,AB=6,AC=9,D、E分别是直线AC和AB上的点,若且AD=3,则BE=4或8.考点:相似三角形的判定与性质..分析:先将AB=6,AC=9,AD=3代入,求出AE=2.由于D、E分别是直线AC和AB上的点,则∠DAE=∠BAC,所以若,根据两边对应成比例且夹角相等的两三角形相似得到△ADE∽△ABC,所以分两种情况进行讨论:①D、E分别在线段AC和AB上;②D、E分别在线段AC和AB的反向延长线上.解答:解:将AB=6,AC=9,AD=3代入,得=,解得AE=2.①D、E分别在线段AC和AB上时,∵AE=2,AB=6,∴BE=AB﹣AE=6﹣2=4;②D、E分别在线段AC和AB的反向延长线上时,∵AE=2,AB=6,∴BE=AB+AE=6+2=8.综上可知BE的长为4或8.故答案为4或8.点评:本题考查了相似三角形的判定与性质,直线的性质,进行分类讨论是解题的关键.17.(4分)(2013•长宁区一模)如图,已知Rt△ABC,∠ACB=90°,∠B=30°,D是AB边上一点,△ACD沿CD翻折,A点恰好落在BC边上的E点处,则cot∠EDB=.考点:翻折变换(折叠问题);特殊角的三角函数值..分析:先根据三角形内角和定理得出∠A=60°,再由轴对称的性质证明出△CED≌△CAD,则∠CED=60°,根据三角形外角的性质求出∠EDB=30°,然后根据特殊角的三角函数值求解.解答:解:在Rt△ABC中,∵∠ACB=90°,∠B=30°,∴∠A=180°﹣∠ACB﹣∠B=60°.∵△ACD沿CD翻折,A点恰好落在BC边上的E点处,∴△CED≌△CAD,∴∠CED=∠A=60°,∴∠EDB=∠CED﹣∠B=30°,∴cot∠EDB=cot30°=.故答案为.点评:本题考查了翻折变换(折叠问题),三角形外角的性质,特殊角的三角函数值,根据轴对称的性质证明出△CED≌△CAD是解题的关键.18.(4分)(2013•长宁区一模