初中数学竞赛辅导讲座

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一讲有理数一、有理数的概念及分类。二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。三、例题示范1、数轴与大小例1、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,那么满足条件的点B与原点O的距离之和等于多少?满足条件的点B有多少个?例2、将9998,19991998,9897,19981997这四个数按由小到大的顺序,用“”连结起来。提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。例3、观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。试确定三个数cabab1,1,1的大小关系。分析:由点B在A右边,知b-a0,而A、B都在原点左边,故ab0,又c10,故要比较cabab1,1,1的大小关系,只要比较分母的大小关系。例4、在有理数a与b(ba)之间找出无数个有理数。提示:P=naba(n为大于是的自然数)注:P的表示方法不是唯一的。2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。例5、在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。3、算对与算巧例6、计算123…200020012002提示:1、逆序相加法。2、求和公式:S=(首项+末项)项数2。例7、计算1+234+5+678+9+…2000+2001+2002提示:仿例5,造零。结论:2003。例8、计算9999991999999个个个nnn提示1:凑整法,并运用技巧:199…9=10n+99…9,99…9=10n1。例9、计算)200213121()2001131211()200113121()2002131211(提示:字母代数,整体化:令200113121,2001131211BA,则例10、计算(1)100991321211;(2)100981421311提示:裂项相消。常用裂项关系式:(1)nmmnnm11;(2)111)1(1nnnn;(3))11(1)(1mnnmmnn;(4)])2)(1(1)1(1[21)2)(1(1nnnnnnn。例11计算n321132112111(n为自然数)例12、计算1+2+22+23+…+22000提示:1、裂项相消:2n=2n+12n;2、错项相减:令S=1+2+22+23+…+22000,则S=2SS=220011。例13、比较200022000164834221S与2的大小。提示:错项相减:计算S21。第二讲绝对值一、知识要点1、绝对值的代数意义;2、绝对值的几何意义:(1)|a|、(2)|a-b|;3、绝对值的性质:(1)|-a|=|a|,|a|0,|a|a;(2)|a|2=|a2|=a2;(3)|ab|=|a||b|;(4)||||||baba(b0);4、绝对值方程:(1)最简单的绝对值方程|x|=a的解:0000aaaax无解(2)解题方法:换元法,分类讨论法。二、绝对值问题解题关键:(1)去掉绝对值符号;(2)运用性质;(3)分类讨论。三、例题示范例1已知a0,化简|2a-|a||。提示:多重绝对值符号的处理,从内向外逐步化简。例2已知|a|=5,|b|=3,且|a-b|=b-a,则a+b=,满足条件的a有几个?例3已知a、b、c在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。例4已知a、b、c是有理数,且a+b+c=0,abc0,求||||||cbabacacb的值。注:对于轮换对称式,可通过假设使问题简化。例5已知:例6已知3x,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。例7已知|x+5|+|x-2|=7,求x的取值范围。提示:1、根轴法;2、几何法。例8是否存在数x,使|x+3|-|x-2|7。提示:1、根轴法;2、几何法。例9m为有理数,求|m-2|+|m-4|+|m-6|+|m-8|的最小值。提示:结合几何图形,就m所处的四种位置讨论。结论:最小值为8。例10(北京市1989年高一数学竞赛题)设x是实数,且f(x)=|x+1|+|x+2|+|x+3|+|x+4|+|x+5|.则f(x)的最小值等于___6_______.例11(1986年扬州初一竞赛题)设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15.对于满足p≤x≤15的x的来说,T的最小值是多少?解由已知条件可得:T=(x-p)+(15-x)+(p+15-x)=30-x.∵当p≤x≤15时,上式中在x取最大值时T最小;当x=15时,T=30-15=15,故T的最小值是15.例12若两数绝对值之和等于绝对值之积,且这两数都不等于0.试证这两个数都不在-1与-之间.证设两数为a、b,则|a|+|b|=|a||b|.∴|b|=|a||b|-|a|=|a|(|b|-1).∵ab≠0,∴|a|>0,|b|>0.∴|b|-1=||ab>0,∴|b|>1.同理可证|a|>1.∴a、b都不在-1与1之间.例13某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15、7、11、3、14台,现在为使各校电脑数相等,各调几台给邻校:一小给二小、二小给三小、三小给四小、四小给五小、五小给一小。若甲小给乙小3台,即为乙小给甲小三台,要使电脑移动的总台数最少,应怎样安排?例14解方程(1)|3x-1|=8(2)||x-2|-1|=21(3)|3x-2|=x+4(4)|x-1|+|x-2|+|x+3|=6.例15(1973年加拿大中学生竞赛题)求满足|x+3|-|x-1|=x+1的一切实数解.分析解绝对值方程的关键是去绝对值符号,令x+3=0,x-1=0,分别得x=-3,x=1,-3,1将全部实数分成3段:x<-3或-3≤x<1或x≥1,然后在每一段上去绝对值符号解方程,例如,当x<-3时,|x+3|=-x-3,|x-1|=1-x,故方程化为-x-3+x-1=x+1,∴x=-5,x=-5满足x<-3,故是原方程的一个解,求出每一段上的解,将它们合并,便得到原方程的全部解,这种方法叫做“零点”分段法,x=-3,x=1叫做零点.第三讲一次方程(组)一、基础知识1、方程的定义:含有未知数的等式。2、一元一次方程:含有一个未知数并且未知数的最高次数为一次的整式方程。3、方程的解(根):使方程左右两边的值相等的未知数的值。4、字母系数的一元一次方程:ax=b。其解的情况:。,ba;,baabx,a无解时当解这任意数时当有唯一解时当0,00;05、一次方程组:由两个或两个以上的一次方程联立在一起的联产方程。常见的是二元一次方程组,三元一次方程组。6、方程式组的解:适合方程组中每一个方程的未知数的值。7、解方程组的基本思想:消元(加减消元法、代入消元法)。二、例题示范例1、解方程1}8]6)432(51[71{91x例2、关于x的方程6232bkxakx中,a,b为定值,无论k为何值时,方程的解总是1,求a、b的值。提示:用赋值法,对k赋以某一值后求之。例3、(第36届美国中学数学竞赛题)设a,a'b,b'是实数,且a和a'不为零,如果方程ax+b=0的解小于a/x+b'=0的解,求a,a'b,b'应满足的条件。例4解关于x的方程1)1(2axxa.提示:整理成字母系数方程的一般形式,再就a进行讨论例5k为何值时,方程9x-3=kx+14有正整数解?并求出正整数解。提示:整理成字母系数方程的一般形式,再就k进行讨论。例6(1982年天津初中数学竞赛题)已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个公共解,并证明对任何a值它都能使方程成立吗?分析依题意,即要证明存在一组与a无关的x,y的值,使等式(a-1)x+(a+2)y+5-2a=0恒成立,令a取两个特殊值(如a=1或a=-2),可得两个方程,解由这两个方程构成的方程组得到一组解,再代入原方程验证,如满足方程则命题获证,本例的另一典型解法例7(1989年上海初一试题),方程并且abc≠0,那么x____提示:1、去分母求解;2、将3改写为bbaacc。例8(第4届美国数学邀请赛试题)若x1,x2,x3,x4和x5满足下列方程组:96248224212262543214321543215432154321xxxxxxxxxxxxxxxxxxxxxxxxxx确定3x4+2x5的值.说明:整体代换方法是一种重要的解题策略.例9解方程组)3(3)2(2)1(1mmzyxmzmyxmzymx提示:仿例8,注意就m讨论。例10如果方程组0253032myxmyx(1)的解是方程2x-y=4(2)的解,求m的值。提示:1、从(1)中解出x,y用m表示,再代入(2)求m;2、在(1)中用消元法消去m再与(2)联立求出x,y,再代入(1)求m。例11如果方程ax+by+cz=d对一切x,y,z都成立,求a,b,c,d的值。提示:赋值法。例12解方程组332xzxzzyx。提示:引进新未知数第四讲列方程(组)解应用题一、知识要点1、列方程解应用题的一般步骤:审题、设未知元、列解方程、检验、作结论等.2、列方程解应用题要领:(1)善于将生活语言代数化;(2)掌握一定的设元技巧(直接设元,间接设元,辅助设元);(3)善于寻找数量间的等量关系。二、例题示范1、合理设立未知元例1一群男女学生若干人,如果女生走了15人,则余下的男女生比例为2:1,在此之后,男生又走了45人,于是男女生的比例为1:5,求原来男生有多少人?提示:(1)直接设元(2)列方程组:例2在三点和四点之间,时钟上的分针和时针在什么时候重合?例3甲、乙、丙、丁四个孩子共有45本书,如果甲减2本,乙加2本,丙增加一倍,丁减少一半,则四个孩子的书就一样多,问每个孩子原来各有多少本书?提示:(1)设四个孩子的书一样多时每人有x本书,列方程;(2)设甲、乙、丙、丁四个孩子原来各有x,y,z,t本书,列方程组:例4(1986年扬州市初一数学竞赛题)A、B、C三人各有豆若干粒,要求互相赠送,先由A给B、C,所给的豆数等于B、C原来各有的豆数,依同法再由B给A、C现有豆数,后由C给A、B现有豆数,互送后每人恰好各有64粒,问原来三人各有豆多少粒?提示:用列表法分析数量关系。例5如果某一年的5月份中,有五个星期五,它们的日期之和为80,求这一年的5月4日是星期几?提示:间接设元.设第一个星期五的日期为x,例6甲、乙两人分别从A、B两地相向匀速前进,第一次相遇在距A点700米处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B点400米处,求A、B两地间的距离是多少米?提示:直接设元。例7某商场经销一种商品,由于进货时价格比原来降低了6.4%,使得利润率增加了8个百分点,求经销这种商品原来的利润率。提示:商品进价、商品售价、商品利润率之间的关系为:商品利润率=[(商品售价—商品进价)商品进价]100%。例8(1983年青岛市初中数学竞赛题)某人骑自行车从A地先以每小时12千米的速度下坡后,以每小时9千米的速度走平路到B地,共用55分钟.回来时,他以每小时8千米的速度

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功