浮力问题一1.测定血液的密度不用密度计(因为这样做需要的血液量太大),而采用巧妙的办法:先在几个玻璃管内分别装入浓度不同的、呈淡蓝色的硫酸铜溶液,然后分别在每个管中滴进一滴血液。分析人员只要看到哪一个管中血滴悬在中间,就能判断血液的密度。其根据是:A.帕斯卡定律B.液体内同一深度各方向压强相等C.物体的浮沉条件D.血滴上部所受硫酸铜溶液的压强等于下部所受硫酸铜溶液的压强答:()2.儿童练习游泳时穿的一种“救生衣”实质是将泡沫塑料包缝在背心上。使用时,穿上这种“救生衣”,泡沫塑料位于人的胸部。为确保人的安全,必须使人的头部露出水面儿童的体重约为300N,人的密度约为l.06×103kg/m3,人的头部体积约占人体总体积的十分之一,泡沫塑料的密度约为10kg/m3,则此儿童使用的“救生衣”的最小体积为_____________。浮力问题二1.我们发现:在抗洪抢险中,大堤上的许多人都身穿厚厚的“背心”,这种“背心”的主要作用是:[]A.能阻碍热传递,从而可以抵御风寒B.跌倒或碰撞时减小其他物体对人体的作用力,起保护作用C.不同的背心反射不同颜色的光,便于识别D.以上说法都不对2.已知空气的密度为1.29kg/m3,人体的平均密度与水的密度相当。质量为60kg的人在空气中受到的浮力大约是__________N。浮力问题三1.1978年夏天,法国、意大利、西班牙等国的科学工作者曾乘坐容积为3.3万m3的充氦气球升入高空。如果气球本身所受的重力(不包括里面的氦气)是它在低空所受浮力的1/4,气球在低空飞行时可吊起最重物体的质量是_______kg。(常温时一个大气压下空气的密度是1.29kg/m3,氦气的密度是0.18kg/m3)浮力问题四1.节日里氢气球飘向高空,越来越小,逐渐看不见了。设想,气球最后可能会怎样。根据你所学的物理知识作出预言,并说明理由。2.某地质勘探队将设备装在木筏上渡河,若不载货物,人和木筏共重为G,木筏露出水面的体积是木筏总体积的1/3,则此要筏的载货重到多为。浮力问题五小明在一根均匀木杆的一端缠绕少许铅丝,使得木杆放在液体中可以竖直漂浮,从而制成一支密度计。将它放在水中,液面到木杆下端的距离为16.5cm,再把它放到盐水中,液面到木杆下端的距离为14.5cm。如果所用铅丝的体积很小,可以忽略,小明测得的盐水密度是多少?浮力问题六如图所示,一根细绳悬挂一个半径为rm、质量为mkg的半球,半球的底面与容器底部紧密接触,此容器内液体的密度为ρkg/m3,高度为Hm,大气压强为p0Pa,已知球体的体积公式是V=4πr3/3,球面积公式是S球=4πr2,圆面积公式是S圆=πr2.则液体对半球的压力为________.若要把半球从水中拉起,则至少要用________的竖直向上的拉力.浮力问题七如图所示,粗细均匀的蜡烛长l0,它底部粘有一质量为m的小铁块.现将它直立于水中,它的上端距水面h.如果将蜡烛点燃,假定蜡烛燃烧时油不流下来,且每分钟烧去蜡烛的长为Δl,则从点燃蜡烛时开始计时,经时间蜡烛熄灭(设蜡烛的密度为ρ,水的密度为ρ1,铁的密度为ρ2).浮力问题八如图所示,密度均匀的木块漂在水面上,现沿虚线将下部分截去,则剩下的部分将()A.上浮一些B.静止不动C.下沉一些D.无法确定浮力问题九如图所示,在盛有某液体的圆柱形容器内放有一木块A,在木块的下方用轻质细线悬挂一体积与之相同的金属块B,金属块B浸没在液体内,而木块漂浮在液面上,液面正好与容器口相齐.某瞬间细线突然断开,待稳定后液面下降了h1;然后取出金属块B,液面又下降了h2;最后取出木块A,液面又下降了h3.由此可判断A与B的密度比为()A.h3∶(h1+h2)B.h1∶(h2+h3)C.(h2-h1)∶h3D.(h2-h3)∶h1浮力问题十如图所示,两只完全相同的盛水容器放在磅秤上,用细线悬挂质量相同的实心铅球和铝球,全部没入水中,此时容器中水面高度相同,设绳的拉力分别为T1和T2,磅秤的示数分别为F1和F2,则()A.F1=F2,T1=T2B.F1>F2,T1<T2C.F1=F2,T1>T2D.F1<F2,T1>T22浮力问题十一1.小明用薄玻璃管做了一个液体密度计,他先把管的下端封闭,装入少许铅粒,然后竖直放入水中,在水面的位置做个刻度,标为1.0,这个刻度的单位是什么?如果再设法做出其他刻度,则较大的刻度在上面还是在下面?管中为什么要放入铅粒?如果不放铅粒而放别的颗粒,对这种物质的密度有什么要求?。2.把一蜡块放入盛满酒精的容器中,溢出酒精的质量是4克;若把该蜡块放入盛满水的容器中,已知ρ蜡=0.9×103kg/m3,ρ酒精=0.8×103kg/m3,则溢出水的的质量是(容器足够大)()A.4gB.4.5gC.5gD.3.6g