(一)不等式1.(排序不等式)设,...21naaanbbb...21njjj,...,,21是n,...,2,1的一个排列,则..........221121112121nnjnjjnnnbababababababababan2.(均值不等式)设naaa,......,,21是n个正数,则naaan...21....21nnaaa3.(柯西不等式)设),...2,1(,niRbaii则.)())((211212iniiniiniibaba等号成立当且仅当存在R,使得),...,2,1(niabii.从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式变形:(1)设RbRaii,则.)()(11212niiniiniiibaba(2)设iiba,同号,且,0,iiba则.)()(1121niiiniiniiibaaba4.(Jensen不等式)若)(xf是),(ba上的凸函数,则对任意),(,...,,21baxxxn)].(...)()([1)...(2121nnxfxfxfnnxxxf5.(幂均值不等式)设)(0Rai则.)...()...(121121MnaaanaaaMnn证:作变换令iixa,则1iixa则.)...()...(12121nxxxxxxnMMnn因0所以,1则函数xxf)(是),0(上的凸函数,应用Jensen不等式即得。6.(切比雪夫不等式)设两个实数组naaa...21,nbbb...21则)....(1)...(12211111121nnniiniinnnbababannbnabababan(该不等式的证明只用排序不等式及niiniiba11的表达式就可得证)7.(一个基础不等式)yxyx)1(1其中]1,0[,0,yx证:若yx,中有一个为零,则结论成立。设yx,均不为零,则原不等式等价于不等式).1()()(yxyx令,tyx则上式).1(tt记,)1()(tttf则1)('ttf当;0)(',1tft0)(',10tft且,0)1('f所以函数)(tf在1t取得最小值0,从而可得证结论。8.(Holder不等式)设).,...2,1(0,nkbakk1,qp且111qp,则qnkqkpnkpkknkkbaba11111)()((等号成立当且仅当qkpktba)证:在不等式7中令qkpkByAxp,,1则有.11qkpkkkBqApBA所以nkqknkpkknkkBqApBA11111令nkqqkkknkppkkkbbBaaA1111)(,)(则得证Holder不等式。*9.与对数函数有关的一个不等式xxxx)1ln(1,.0x(该不等式的证明利用导数的符号得出函数的单调性)*10.三角函数有关的不等式xxxtansin)2,0(x*11。舒尔(Schur)不等式设Rzyx,,,则0))(())(())((yzxzzzyxyyzxyxx证明:首先考虑设Rzyx,,,则0))(())(())((yzxzzzyxyyzxyxxrrr由于对称性可设0zyx(1)当0r时左边0])()()[(21))(())(())((222222xzzyyxzxyzxyzyxyzxzzyxyzxyx所以结论成立;(2)当0r时0zy,0zx,0rryx左边0)())(())(())(())(())(())(())((2yxyzyyxyzxyxyzyyxyzxyxxzxzyzzyyxyzxyxxrrrrrrrr结论得证;(3)当0r时0yx,0zx,0rryz左边0)())(())(())(())(())(())(())((2zyyzyzxyzyyxyzxzyzzyyxyzxzyzzyyxyzxyxxrrrrrrrr结论得证。当1r时有0))(())(())((yzxzzzyxyyzxyxx*12。闵可夫斯基(Minkowski)不等式如果nxxx,......,,21与nyyy,......,,21都是非负实数1p,那么pnipipnipippiniiyxyx111111)()())((证明:11)()()(piiipiiipiiyxyyxxyx应用Holder不等式得ppiippipiiiyxxyxx1111))(()()(,ppiippipiiiyxyyxy1111))(()()(。从而得证。例1.设Rcba,,且,1abc求证.333222cbacba证:(1)由柯西不等式,)())((2222333cbacbacba而322222222223)()())(111()(3abccbacbacbacba由条件即得cbacba222所以结论成立。(2)由幂均值不等式(32,1).)33()()3()3(3)3(32222132222222122222223222333cbacbacbacbacbacbacba(3)由切比雪夫不等式,不妨设cba,则.3))((222222333cbacbacbacba例2.设,1).,...,2,1(,01niiixnix求证.1111nxxxniiniii证:左边=niiniixx11111(由柯西不等式的变形.111121niiniixnx)又212112)1()1()(1(niiininixx即)1(11nnxnii所以.1)1()1(111211nnnnnnnxxniinii又niiniixxn1212221)]1...11)([(结合上述两式得证结论。例3:已知cba,,为满足1cba的正数,求证:.427111abccabbca证明:由柯西不等式的变形知.19)111(1112abcabcabcabccbaabccabbca而31)(312cbaabcabc所以原不等式成立。4.cba,,是正实数,求证:.8)(2)2()(2)2()(2)2(222222222bacbacacbacbcbacbaI证明:显然222222222)(2))(4(2)(2)()(44)(2)2(cbacbcbacbacbcbaacbacba同理22222)(2))(4(2)(2)2(acbacacbacbacb,22222)(2))(4(2)(2)2(bacbabacbacbac所以可得222222)(2))(4()(2))(4()(2))(4(6bacbabacacbacacbcbacbcbaI若bacacbcba4,4,4(*),则)(323)(22)(22232)(2)(2222cbacbcbacbcba即222)(32)(2cbacba同理222)(32)(2cbaacb,222)(32)(2cbabac所以831215221)(215296)(2)](5)(3[36)(2)222666(36)(2))(4(3)(2))(4(3)(2))(4(36)(2))(4()(2))(4()(2))(4(62222222222222222222222cbacbacbacbacbacbacbaacbcabcbababaccbaacacbcbacbcbabacbabacacbacacbcbacbcbaI(因为).(3)111)(()(2222222222cbacbacba)若上述假设(*)不成立,不妨设cba4,则2)(2))(4(2)(2)2(22222cbacbcbacbacba由柯西不等式)111]()([)]([2222222acbbacbb故3)(2)2(222acbacb,同理.3)(2)2(222bacbac所以.8I综上可知8I,当且仅当cba时等号成立。5.若zyx,,均大于1,求证.2111111222222yxzxzyzyxJ证明:事实上2222222222222222)111()]1)(1()1)(1()1)(1)[(111111(zyxyxzxzyzyxyxzxzyzyx故.23)(2)1()1()1()()()(23)(26662229)1)(1()1)(1()1)(1()3(2222222222222222222222222222222222222222224442222222222zyxxzzyyxzyxxzzyyxzyxxzzyyxzyxxzzyyxzyxxzzyyxzyxxzzyyxzyxyxzxzyzyxzyxJ(当且仅当1zyx时等号成立)6.已知cba,,为正实数,证明:若4222abccba,则.3cba证:显然cba,,在区间[0,2]上,设cos2a,cos2b)2,0[,当c为正数时abccba222为增函数因此,对任意的正数ba,至多有一正数c满足4222abccba。下面证明)cos(2)cos(2c满足4222abccba事实上.1coscossinsincoscossinsincoscos2coscos2sinsincoscos2sinsincoscoscoscos)cos(coscos2)(coscoscos22222222222222222若2,则0)cos(2是c满足条件的唯一值。下面证明,若2则不存在满足条件的c。事实上,满足条件的c一定满足下面方程0)1cos(cos4coscos4222cc此时上面方程若有解21,cc,则0)1cos(cos40coscos4222121cccc从而21,cc均小于零,所以不存在满足条件的c。因此cos2,cos2,cos2cba(,,是一个锐角三角形的三个内角)则3)3cos(32)coscos(cos2cba(上式利用xcos是]2,0[上的凹函数)所以结论得证。7.已知正数naaa,......,,21,nbbb,.....