2017年吉林省通化市梅河口五中高考数学二模试卷(文科)(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017年吉林省通化市梅河口五中高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知全集U=Z,A={﹣3,1,2},B={1,2,3},则A∩∁UB为()A.{﹣3,1}B.{1,2}C.{﹣3}D.{﹣3,2}2.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知两个单位向量,的夹角为60°,=(1﹣t)+t,若•=﹣,则t等于()A.1B.﹣1C.2D.﹣24.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2xD.f(x)=﹣tanx5.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]6.已知角α是第二象限角,直线2x+(tanα)y+1=0的斜率为,则cosα等于()A.B.﹣C.D.﹣7.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16B.8C.4D.28.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6B.7C.8D.99.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3C.2D.10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为me,众数为m0,平均值为,则()A.me=m0=B.me=m0<C.me<m0<D.m0<me<11.过点O(0,0)作直线与圆(x﹣4)2+(y﹣8)2=169相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为()A.B.C.D.12.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44C.20D.46二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.将函数f(x)=cos2x+sin2x的图象向左平移m(m>0)单位后所得的图象关于y轴对称,则m的最小值为.16.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知Sn为等差数列{an}的前n项和,S6=51,a5=13.(1)求数列{an}的通项公式;(2)数列{bn}的通项公式是bn=,求数列{bn}的前n项和Sn.18.某中学高三(10)班有女同学51名,男同学17名,“五四”期间该班班主任按分层抽样的分法组建了一个由4名同学组成的“团的知识”演讲比赛小组.(Ⅰ)演讲比赛中,该小组决定先选出两名同学演讲,选取方法是:先从小组里选出1名演讲,该同学演讲完后,再从小组内剩下的同学中选出一名同学演讲,求选中的两名同学恰有一名女同学的概率;(Ⅱ)演讲结束后,5位评委给出第一个演讲同学的成绩分别是:69、71、72、73、75分,给出第二个演讲同学的成绩分别是:70、71、71、73、75分,请问哪位同学的演讲成绩更稳定,并说明理由.19.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,AC⊥BC,E分别在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.(1)求证:BC⊥AC1;(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.20.设函数f(x)=alnx﹣bx2(x>0).(1)若函数f(x)在x=1处于直线y=﹣相切,求函数f(x)在[,e]上的最大值;(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,],x∈[1,e2]都成立,求实数m的取值范围.21.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.2017年吉林省通化市梅河口五中高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知全集U=Z,A={﹣3,1,2},B={1,2,3},则A∩∁UB为()A.{﹣3,1}B.{1,2}C.{﹣3}D.{﹣3,2}【考点】交、并、补集的混合运算.【分析】根据题意利用补集的定义求得∁UB,再根据两个集合的交集的定义求得A∩∁UB.【解答】解:∵U=Z,A={﹣3,1,2},B={1,2,3},∴∁UB={…,﹣2,﹣1,0,4,5,6,…}则A∩∁UB={﹣3},故选:C.2.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】由=﹣i,得,然后利用复数代数形式的除法运算化简,求出复数z在复平面内对应的点的坐标,则答案可求.【解答】解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.3.已知两个单位向量,的夹角为60°,=(1﹣t)+t,若•=﹣,则t等于()A.1B.﹣1C.2D.﹣2【考点】平面向量数量积的运算.【分析】可知,进行数量积的运算即可由得出关于t的方程,解出t即可.【解答】解:===;解得t=﹣2.故选D.4.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2xD.f(x)=﹣tanx【考点】奇偶性与单调性的综合.【分析】根据函数的解析式及基本初等函数的性质,逐一分析出四个函数的单调性和奇偶性,即可得到答案.【解答】解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.5.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]【考点】充要条件.【分析】由x>2得到x2>4,根据充分不必要条件的概念得:a≤4.【解答】解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.6.已知角α是第二象限角,直线2x+(tanα)y+1=0的斜率为,则cosα等于()A.B.﹣C.D.﹣【考点】直线的斜率.【分析】表示出k,求出tanα,根据角α是第二象限角,求出cosα即可.【解答】解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.7.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16B.8C.4D.2【考点】程序框图.【分析】已知b=8,判断循环条件,i<8,计算循环中s,i,k,当x≥8时满足判断框的条件,退出循环,输出结果s即可.【解答】解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:8.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6B.7C.8D.9【考点】根的存在性及根的个数判断;函数的周期性.【分析】当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,由周期性可求得区间[0,6)上解的个数,再考虑x=6时的函数值即可.【解答】解:当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7故选B9.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3C.2D.【考点】三角形中的几何计算.【分析】根据三角形的面积公式求得丨AB丨,cosA=,sinA=,求得丨AD丨,丨BD丨在△BDC中利用勾股定理即可求得BC的长度.【解答】解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为me,众数为m0,平均值为,则()A.me=m0=B.me=m0<C.me<m0<D.m0<me<【考点】众数、中位数、平均数.【分析】根据题意,由统计图依次计算数据的中位数、众数、平均数,比较即可得答案.【解答】解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数me=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<me<,故选:D.11.过点O(0,0)作直线与圆(x﹣4)2+(y﹣8)2=169相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为()A.B.C.D.【考点】几何概型.【分析】利用圆的标准方程求出圆的圆心及半径,求出当直线与圆心和(0,0)连线垂直时的弦长即最短的弦长,求出直径即最大的弦长,求出最大弦长与最小弦长之间的所有的直线条数,选出长度不超过14的直线条数,利用古典概型概率公式求出概率.【解答】解:(x﹣4)2+(y﹣8)2=169的圆心为(4,8),半径为13,∵(0,0)在圆的内部且圆心与(0,0)的距离为12∴过点O(0,0)作的直线中,最短的弦是直线与圆心和(0,0)连线垂直最短的弦长为2=10,过点O(0,0)作的直线中,最长的弦是直径,其长为26弦长均为整数的所有直线的条数有2×(25

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功