2018年内蒙古包头市东河区中考数学模拟试卷(4月份)一.选择题(共12小题,满分30分)1.计算10+(﹣24)÷8+2×(﹣6)的结果是()A.﹣5B.﹣1C.1D.52.一个正常人的心跳平均每分钟70次,一天大约跳的次数用科学记数法表示这个结果是()A.1.008×105B.100.8×103C.5.04×104D.504×1023.(3分)下列运算正确的是()A.x6÷x2=x3B.2x﹣1=C.(﹣2x3)2=4x6D.﹣2a2•a3=﹣2a64.(3分)﹣sin60°的倒数为()A.﹣2B.C.﹣D.﹣5.(3分)某青年排球队12名队员的年龄情况如表:年龄1819202122人数1[来源:Z,xx,k.Com]4322则这个队队员年龄的众数和中位数是()A.19,20B.19,19C.19,20.5D.20,196.(3分)不等式组的解集在数轴上可以表示为(()A.B.C.D.7.(3分)下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0B.1C.2D.38.(3分)关于x的方程rx2+(r+2)x+r﹣1=0有根只有整数根的一切有理数r的值有()个.A.1B.2C.3D.不能确定9.(3分)O为线段AB上一动点,且AB=2,绕O点将AB旋转半周,则线段AB所扫过的面积的最小值为()A.4πB.3πC.2πD.π10.(3分)下列命题中正确的个数是()①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为;②如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切;③过三点可以确定一个圆;④两圆的公共弦垂直平分连心线.A.0个B.4个C.2个D.3个11.(3分)如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四边形ABCD是平行四边形,下列结论中错误的有()①△ACE以点A为旋转中心,逆时针方向旋转90°后与△ADB重合,②△ACB以点A为旋转中心,顺时针方向旋转270°后与△DAC重合,③沿AE所在直线折叠后,△ACE与△ADE重合,④沿AD所在直线折叠后,△ADB与△ADE重合,⑤△ACE的面积等于△ABE的面积.A.1个B.2个C.3个D.4个12.(3分)二次函数y=ax2+bx+c(x∈R)的图象在x轴下方,且对称轴在y轴左侧,则()A.a>0,b>0,c>0B.a<0,b<0,c<0C.a<0,b>0,c>0D.a<0,b>0,c<0二.填空题(共8小题,满分24分,每小题3分)13.(3分)已知a为实数,且与都是整数,则a的值是.14.(3分)化简分式(x+2﹣)•=.15.(3分)为了知道一块不规则的封闭图形的面积,小聪在封闭的图形内画了一个边长为1m的正方形,在不远处向封闭图形内任意投掷石子,且记录如下,则封闭图形的面积为m2.掷石子次数50100150200300石子落在正方形内(含边上)296191118178落在正方形内(含边上)的频率0.580[来源:学科网]0.6100.6070.5900.59316.(3分)已知扇形的弧长为2π,圆心角为60°,则它的半径为.17.(3分)若x=时,关于x,y的二元一次方程组的解x,y互为倒数,则a﹣2b=.18.(3分)已知三角形三边长分别为5,12,13.它的内切圆面积为.19.(3分)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.20.(3分)如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是.三.解答题(共6小题,满分60分)21.(8分)为提高三亚市初级中学教师业务水平,相关单位举办了首届“三亚市敏特杯数学命题大赛”,在众多自命题题目中共有5道题目进入专家组评审,将前5天的投票数据整理成如下不完整的统计图表:票数条形统计图题目编号人数百分比140[来源:学+科+网]10%2120m%38822%4a20%57218%合计4001请根据图表提供的信息,解答下面问题:(1)票数统计表中的a=,m=.(2)请把票数统计图补充完整;(3)若绘制“票数扇形统计图”编号是“4”的题目所对应扇形的圆心角是度;(4)至本次投票结束,总票数共有1200票,请估计编号是“3”的题目约获得票.22.(8分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).23.(10分)郑州市雾霾天气趋于严重,丹尼斯商场根据民众健康需要,代理销售每台进价分别为600元、560元的A、B两种型号的空气净化器,如表是近两周的销售情况:销售时段销售数量[来源:Z§xx§k.Com][来源:学科网]销售收入A种型号B种型号第一周4台5台7100元第二周6台10台12600元(进价、售价均保持不变,利润=销售收入﹣进货成本)商场准备用不多于17200元的金额再采购这两种型号的空气净化器共30台.(1)请分析以上的信息,提出一个用二元一次方程组或一元一次方程解决的问题,并解决这个问题;(2)分析题目中各个量之间的关系,请写出一个函数关系式,并说明是什么函数关系;(3)超市销售完这30台空气净化器能否实现利润为6200元的目标,若能,请给出相应的采购方案;若不能,请说明理由.24.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.25.(12分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.26.(12分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.2018年内蒙古包头市东河区中考数学模拟试卷(4月份)参考答案与试题解析一.选择题(共12小题,满分30分)1.【解答】解:原式=10﹣3﹣12=10﹣15=﹣5,故选:A.2.【解答】解:∵一个正常人的平均心跳速率约为每分钟70次,∴一天24小时大约跳:24×60×70=10080=1.008×105(次).故选:A.3.【解答】解:A、原式=x4,不符合题意;B、原式=,不符合题意;C、原式=4x6,符合题意;D、原式=﹣2a5,不符合意义,故选:C.4.【解答】解:﹣sin60°=﹣,则﹣sin60°的倒数=﹣=﹣,故选:D.5.【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.所以本题这组数据的中位数是20,众数是19.故选:A.6.【解答】解:∵由不等式①得:x≥﹣1,由不等式②得:x<1,∴不等式组的解集为﹣1≤x<1,∴不等式组的解集在数轴上可以表示为:故选:B.7.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.8.【解答】解:(1)若r=0,x=,原方程无整数根;(2)当r≠0时,x1+x2=﹣,x1x2=;消去r得:4x1x2﹣2(x1+x2)+1=7,即(2x1﹣1)(2x2﹣1)=7,∵7=1×7=(﹣1)×(﹣7),∴①,解得,∴1×4=,解得r=﹣;②,解得;同理得:r=﹣,③,解得,r=1,④,解得,r=1.∴使得关于x的方程rx2+(r+2)x+r﹣1=0有根且只有整数根的r值是﹣或1,故选:B.9.【解答】解:当O是AB中点时,线段AB所扫过的面积的最小,最小面积=π•12=π,故选:D.10.【解答】解:①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为5,①是假命题;如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外离,②是假命题;过不在同一直线上的三点可以确定一个圆,③是假命题;两圆的连心线垂直平分公共弦,④是假命题,故选:A.11.【解答】解:①∵△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∴AE=AB,AC=AD,∠EAC=∠BAD,在△ACE和△ADB中,∵,∴△ACE≌△ADB(SAS),∴△ACE以点A为旋转中心,逆时针方向旋转90°(旋转角为∠EAB=90°)后与△ADB重合;故①正确;②∵平行四边形是中心对称图形,∴要想使△ACB和△DAC重合,△ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与△DAC重合,故②错误;③∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAC=∠ACD=45°,∴∠EAC=∠BAC+∠CAD=135°,∴∠EAD=360°﹣∠EAC﹣∠CAD=135°,∴∠EAC=∠EAD,在△EAC和△EAD中,∵,∴△EAC≌△EAD(SAS),∴沿AE所在直线折叠后,△ACE与△ADE重合;故③正确;④∵由①③,可得△ADB≌△ADE,∴沿AD所在直线折叠后,△ADB与△ADE重合,故④正确;⑤过B作BH⊥AD,交DA的延长线于H,∵四边形ABCD是平行四边形,∴BH=AC,∵△ACE≌△ADB,∴S△ACE=S△ADB=AD×BH=AD•AC=AC2,∵S△ABE=AE•AB=AB2,AB>AC,∴S△ABE>S△ACE;故⑤错误.故选:B.12.【解答】解:∵二次函数图象在x轴下方,∴二次函数开口方向向下,即a<0,∴c<0∵对称轴在y轴左侧,即﹣<0,∴b<0,故选:B.二.填空题(共8小题,满分24分,每小题3分)13.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.14.【解答】解:原式=(﹣)•=•=﹣2(x+3)=﹣2x﹣6,故答案为:﹣2x﹣6.15.【解答】解:根据统计表,可得石子落在正方形内的概率约为0.593,设封闭图形的面积为x,则有=0.593,解得x≈1.7.∴封闭图形的面积为1.7,故答案为:1.7.16.【解答】解:设半径为r,2,解得:r=6,故答案为:617.【解答】解:由于x、y互为倒数,x=,则y=2,代入二元一次方程组,得,解得a=10,b=﹣,则a﹣2b=11.故本题答案为:11.18.【解答】解:AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠C=90°,连接OD、OF,设圆O的半径是r,∵圆O是△ABC的内切圆,切点分别是D、E、F,∴CD=CF,AE=AD,BE=BF,OD=OF,∠ODC=∠C=∠OFC=90°,∴四边形ODCF是正方形,∴O