2018年辽宁省抚顺市新宾县中考数学模拟试卷(四)一、选择题(本大题共10小题,每题2分,满分20分)1.如图是由八个相同小正方体组合而成的几何体,则其左视图是()A.B.C.D.2.在Rt△ABC中,∠C=90°,AB=4,BC=3,则cosA的值为()A.B.C.D.3.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁4.如果关于x的一元二次方程x2﹣kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为()A.B.C.D.5.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+66.设点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1B.C.2D.8.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是()A.80°B.110°C.120°D.140°9.一次函数y=kx﹣k与反比例函数y=在同一直角坐标系内的图象大致是()A.B.C.D.10.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4acB.ac>0C.a﹣b+c>0D.4a+2b+c<0二、填空题(本大题共8小题,每题2分,满分16分)11.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为.12.若|a﹣4|+=0,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是.13.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.14.如图,AB是⊙O的直径,AB=13,AC=5,则tan∠ADC=.15.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD的面积为.16.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为cm2.17.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的垂线,垂足分别为A,B.取线段OB的中点C,连结PC并延长交x轴于点D,则△APD的面积为.18.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)三、解答题(本大题共2个小题,第19题8分,第20题6分,满分14分)19.(1)计算:cos45°﹣tan45°;(2)计算:sin60°+tan60°﹣2cos230°20.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=6,求DH的长.四、解答题(本大题共2个小题,每题8分,满分16分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)22.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.五、解答题(满分8分)23.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.六、解答题(满分8分)24.我市某工艺厂,设计了一款成本为20元/件的工艺品投放市场进行试销,经过市场调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)上表中x、y的各组对应值满足一次函数关系,请求出y与x的函数关系式;(2)物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?七、解答题(满分8分)25.如图,∠ACD=90°,AC=DC,MN是过点A的直线,DB⊥MN于点B,连接BC.(1)当MN绕A旋转到如图1位置时,线段AB、BC、BD之间满足怎样的数量关系,请写出你的猜想,并证明你的猜想.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CB=.八、解答题(满分10分)26.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年辽宁省抚顺市新宾县中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10小题,每题2分,满分20分)1.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.2.【分析】根据勾股定理求出AC的长,根据余弦的定义解答即可.【解答】解:如图所示:∵在Rt△ABC中,∠C=90°,AB=4,BC=3,∴AC===,∴cosA==.故选:B.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.【分析】首先根据题意计算出所有基本事件总数,然后根据题意求出一元二次方程具有两个不等实数根时所包含的基本事件数,进而计算出答案.【解答】解:二次方程有两个不等实数根,由根的判别式可得k2﹣8>0,k=1,k2﹣8=﹣7,不符合题意;k=2,k2﹣8=﹣4,不符合题意,k=3,k2﹣8=1,符合题意,k=4,k2﹣8=8,符合题意;k=5,k2﹣8=17,符合题意;k=6,k2﹣8=28,符合题意.共有6种等可能的结果,4种符合题意,根的概率是:=,故选:A.【点评】本题主要考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【解答】解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.【点评】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.6.【分析】根据反比例函数图象的性质得出k的取值范围,进而根据一次函数的性质得出一次函数y=﹣2x+k的图象不经过的象限.【解答】解:∵点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,∴x1<x2<0时,y随x的增大而增大,∴k<0,∴一次函数y=﹣2x+k的图象不经过的象限是:第一象限.故选:A.【点评】此题主要考查了一次函数图象与系数的关系以及反比例函数的性质,根据反比例函数的性质得出k的取值范围是解题关键.7.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选:C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.8.【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.【解答】解:连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°﹣(∠OAP+∠OBP+∠P)=140°,∵圆周角∠ADB与圆心角∠AOB都对弧AB,∴∠ADB=∠AOB=70°,又四边形ACBD为圆内接四边形,∴∠ADB+∠ACB=180°,则∠ACB=110°.故选:B.【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.9.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项正确;D、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误.故选:C.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.10.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1