2019年3月江苏省盐城市东台市中考数学模拟试卷(含答案解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年江苏省盐城市东台市中考数学模拟试卷(3月份)一、选择题(本大题共有6小题,每小题3分,共18分)1.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,1)2.如表记录了甲、乙、丙、丁四名跳远运动员几次选拔赛成绩的平均数与方差S2:甲乙丙丁平均数(cm)563560563560方差S2(cm2)6.56.517.514.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁3.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.4.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20°B.25°C.30°D.50°5.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠06.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.4二、填空题(本大题共有10小题,每小题3分,共30分)7.已知一组数据:4,2,5,0,3.这组数据的中位数是.8.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为cm.9.一元二次方程2x2+3x+1=0的两个根之和为.10.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面积等于cm2.11.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为.12.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…﹣2023…y…8003…当x=﹣1时,y=.13.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)14.如图,在△ABC中,DE∥BC,=,则=.15.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.三、解答题(本大题共有11小题,共102分)17.计算:sin45°+2cos30°﹣tan60°18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n19.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.22.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=3.求BF的长.25.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.26.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.27.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.2019年江苏省盐城市东台市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,1)【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).2.如表记录了甲、乙、丙、丁四名跳远运动员几次选拔赛成绩的平均数与方差S2:甲乙丙丁平均数(cm)563560563560方差S2(cm2)6.56.517.514.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【解答】解:∵S甲2=6.5,S乙2=6.5,S丙2=17.5,S丁2=14.5,∴S甲2=S乙2<S丁2<S丙2,∵=563,=560,∴>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.【点评】此题考查了平均数和方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率.【解答】解:可能出现的结果甲打扫社区卫生打扫社区卫生参加社会调查参加社会调查乙打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,则两人同时选择“参加社会调查”的概率为,故选:B.【点评】此题考查的是用列表法或树状图法求概率.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.4.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20°B.25°C.30°D.50°【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=,然后根据圆周角定理计算∠ADC的度数.【解答】解:∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=,∴∠ADC=∠BOC=25°.故选:B.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.5.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围.【解答】解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选:D.【点评】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.6.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.4【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选:B.【点评】此题考查了相似三角形的判断与性质,关键是根据AA证出△CBA∽△CAD,是一道基础题.二、填空题(本大题共有10小题,每小题3分,共30分)7.已知一组数据:4,2,5,0,3.这组数据的中位数是3.【分析】要求中位数,按从小到大的顺序排列后,找出最中间的一个数(或最中间的两个数的平均数)即可.【解答】解:从小到大排列此数据为:0,2,3,4,5,第3位是3,则这组数据的中位数是3.故答案为:3.【点评】考查了中位数的知识,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.8.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为4cm.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=2×8,解得c=±4(线段是正数,负值舍去),故答案为:4.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.9.一元二次方程2x2

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功