初中数学竞赛专题选讲一元一次方程解的讨论一、内容提要1,方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的解也叫做根。例如:方程2x+6=0,x(x-1)=0,|x|=6,0x=0,0x=2的解分别是:x=-3,x=0或x=1,x=±6,所有的数,无解。2,关于x的一元一次方程的解(根)的情况:化为最简方程ax=b后,讨论它的解:当a≠0时,有唯一的解x=ab;当a=0且b≠0时,无解;当a=0且b=0时,有无数多解。(∵不论x取什么值,0x=0都成立)3,求方程ax=b(a≠0)的整数解、正整数解、正数解当a|b时,方程有整数解;当a|b,且a、b同号时,方程有正整数解;当a、b同号时,方程的解是正数。综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b二、例题例1a取什么值时,方程a(a-2)x=4(a-2)①有唯一的解?②无解?③有无数多解?④是正数解?解:①当a≠0且a≠2时,方程有唯一的解,x=a4②当a=0时,原方程就是0x=-8,无解;③当a=2时,原方程就是0x=0有无数多解④由①可知当a≠0且a≠2时,方程的解是x=a4,∴只要a与4同号,即当a0且a≠2时,方程的解是正数。例2k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?解:①化为最简方程(k+2)x=4当k+2能整除4,即k+2=±1,±2,±4时,方程的解是整数∴k=-1,-3,0,-4,2,-6时方程的解是整数。②化为最简方程kx=k-6,当k≠0时x=kk6=1-k6,只要k能整除6,即k=±1,±2,±3,±6时,x就是整数当k=1,2,3时,方程的解是负整数-5,-2,-1。例3己知方程a(x-2)=b(x+1)-2a无解。问a和b应满足什么关系?解:原方程化为最简方程:(a-b)x=b∵方程无解,∴a-b=0且b≠0∴a和b应满足的关系是a=b≠0。例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?解:原方程化为最简方程:(3a+2b-8)x=2a+3b-7,根据0x=0时,方程有无数多解,可知当07320823baba时,原方程有无数多解。解这个方程组得12ba答当a=2且b=1时,原方程有无数多解。三、练习1,根据方程的解的定义,写出下列方程的解:①(x+1)=0,②x2=9,③|x|=9,④|x|=-3,⑤3x+1=3x-1,⑥x+2=2+x2,关于x的方程ax=x+2无解,那么a__________3,在方程a(a-3)x=a中,当a取值为____时,有唯一的解;当a___时无解;当a_____时,有无数多解;当a____时,解是负数。4,k取什么整数值时,下列等式中的x是整数?①x=k4②x=16k③x=kk32④x=123kk5,k取什么值时,方程x-k=6x的解是①正数?②是非负数?6,m取什么值时,方程3(m+x)=2m-1的解①是零?②是正数?7,己知方程221463ax的根是正数,那么a、b应满足什么关系?8,m取什么整数值时,方程mmx321)13(的解是整数?9,己知方程axxb231)1(2有无数多解,求a、b的值。练习题参考答案1.①-1②±3③±9④无解⑤无解⑥无数多个解2.a=13.a≠3,a≠0;a=3;a=0;a3且a≠04.①k=±1,±2,±4②2,0,3,-1,4,-2,7,-5③±1,±3④4,-5,0-2(153123kkk)5.①k0②k≤06.①m=-1②m<-17.2a+b08.化为最简方程mx=m+3,当m=±1,±3时,有整数解9.化为最简方程(3a-b)x=b+2当0203bba时方程无解,解得232ba[文章来源:教师之家转载请保留出处][相关优质课视频请访问:教学视频网]