高中物理竞赛教程_第七讲__运动定律

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三讲运动定律§3.1牛顿定律3.1.1、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。这是牛顿第一定律的内容。牛顿第一定律是质点动力学的出发点。物体保持静止状态或匀速直线运动状态的性质称为惯性。牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。无论是静止还是匀速直线运动状态,其速度都是不变的。速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。简称惯性系。相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非惯性系相对惯性系必作变速运动,地球是较好的惯性系,太阳是精度更高的惯性系。3.1.2.牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:maFmFa或(3)理解要点①牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。在应用该定律处理物体在二维平面或三维空间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式xxmaFmaFyymaFzzmaF②牛顿第二定律反映了力的瞬时作用规律。物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。③当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在—样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。这个结论称为力的独立作用原理。④牛顿第二定律阐述了物体的质量是惯性大小的量度,公式aFm/反映了对同—物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量F1F2Fa1a2a图3-1-1越大,物体加速度越小,运动状态越难改变,惯性也就越大。⑤牛顿第二定律的数学表达式maF定义了力的基本单位;牛顿(N)。因为,mFa/,故kmaF,当定义使质量为1kg的物体产生21sm加速度的作用力为1N时,即1N=211smkg时,k=1。由于力的单位1N的规定使牛顿第二定律公式中的k=1,由此所产生的单位制即我们最常用的国际单位制。⑥在惯性参考系中,公式maF中的ma不是一个单独的力,更不能称它是什么“加速力”,它是一个效果力,只是在数值上等于物体所受的合外力。⑦对一个质点系而言,同样可以应用牛顿第二定律。如果这个质量系在任意的x方向上受的合外力为xF,质点系中的n个物体(质量分别为nmmm,,21)在x方向上的加速度分别为nxxxaaa,,21,那么有nxnxxxamamamF2211这就是质点系的牛顿第二定律。3.1.3、牛顿第三定律(1)定律内容:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在一条直线上。(2)数学表达式:FF(3)理解要点①牛顿第三定律揭示了物体相互作用的规律,自然界中的力的作用都是相互的,任何一个物体既为受力体,则它一定就是施力体。②相互作用力必定是同一性质的力,即如果其中一个力是摩擦力,则它的反作用力也一定是摩擦力。③两个相互作用力要与一对平衡力区分清楚。④这个相互作用力是指的性质力。对于效果力不一定能找到“整体”的反作用力,如有人说向心力的反作用力就是离心力。这是错误的,因为向心力往往是由多个力作用是共同效果,其中每个力都有其各自的反作用力,故向心力这个合力就不一定有一个所谓反作用力。3.1.4、关于参照系的问题(1)惯性参照系:牛顿第一定律实际上又定义了一种参照系,在这个参照系中观察,一个不受力作用的物体将保持静止或匀速直线运动状态,这样的参照系就叫做惯性参照系,简称惯性系。由于地球在自转的同时又绕太阳公转,所以严格地讲,地面不是一个惯性系。在一般情况下,我们可不考虑地球的转动,且在研究较短时间内物体的运动,我们可以把地面参照系看作一个足够精确的惯性系。(2)非惯性参照系:凡牛顿第一定律不成立的参照系统称为非惯性参性系,一切相对于惯性参照系做加速运动的参照系都是非惯性参照系。在考虑地球转动时,地球就是非惯性系。在非惯性系中,物体运动不遵循牛顿第二定律,但在引入“惯性力”的概念以后,就可以利用牛顿第二定律的形式来解决动力学问题了。(关于惯性力的应用在后边将到)。vF图3-2-1§3.2牛顿定律在曲线运动中的应用3.2.1、物体做曲线运动的条件物体做曲线运动的条件是,物体的初速度不为零,受到的合外力与初速度不共线,指向曲线的“凹侧”,如图3-2-1,该时刻物体受到的合外力F与速度的夹角,满足的条件是0º180º。3.2.2、圆周运动物体做匀速圆周运动的条件是,物体受到始终与速度方向垂直,沿半径指向圆心,大小恒定的力的作用。由牛顿第二定律可知,其大小为RmRvmmaFn22。在变速圆周运动中,合外力在法线方向和切线方向都有分量,法向分量产生向心加速度。RmRmvmaFnn22/切向分量产生切向加速度。tvmmaF3.2.3、一般曲线运动与变速圆周运动类似,在一般曲线运动中,合外力在法线方向和切线方向都有分量,法向分量的大小为RvmmaFnn2R为曲线在该处的曲率半径,切向分量的大小为tvmmaF§3.3惯性力应用牛顿定律时,选用的参照系应该是惯性系。在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,引入惯性力的概念,引入的惯性力惯F必须满足amFF惯式中F是质点受到的真实合力,a是质点相对非惯性系的加速度。真实力与参照系的选取无关,惯性力是虚构的力,不是真实力。惯性力不是自然界中物质间的相互作用,因此不属于牛顿第三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力.3.3.1.平动加速系统中的惯性力设平动非惯性系相对于惯性系的加速度为0a。质点相对于惯性系加速度a,由相对运动知识可知,质点相对于平动非惯性系的加速度)(0aaa质点受到的真实力对惯性系有amF对非惯性系amFF惯)(0amamFF惯得0amF惯平动非惯性系中,惯性力由非惯性系相对惯性系的加速度及质点的质量确定,与质点的位置及质点相对于非惯性系速度无关。3.3.2、匀速转动系中的惯性力如图3—3—1,圆盘以角速度绕竖直轴匀速转动,在圆盘上用长为r的细线把质量为m的点系于盘心且质点相对圆盘静止,即随盘一起作匀速圆周运动,以惯性系观察,质点在线拉力F作用下做匀速圆周运动,符合牛顿第二定律.以圆盘为参照系观察,质点受力拉到F作用而保持静止,不符合牛顿定律.要在这种非惯性系中保持牛顿第二定律形式不变,在质点静止于此参照系的情况下,引入惯性力0amFF惯rmTF2惯r为转轴向质点所引矢量,与转轴垂直,由于这个惯性力的方向沿半径背离圆心,通常称为惯性离心力.由此得出:若质点静止于匀速转动的非惯性参照系中,则作用于此质点的真实力与惯性离心力的合力等于零.惯性离心力的大小,除与转动系统的角速度和质点的质量有关外,还与质点的位置有关(半径),必须指出的是,如果质点相对于匀速转动的系统在运动,则若想在形式上用牛顿第二定律来分析质点的运动,仅加惯性离心力是不够的,还须加其他惯性力。如科里奥利力,科里奥利力是以地球这个转动物体为参照系所加入的惯性力,它的水平分量总是指向运动的右侧,即指向相对速度的右侧。例如速度自北向南,科里奥利力则指向西方。这种长年累月的作用,使得北半球河流右岸的冲刷甚于左岸,因而比较陡峭。双轨铁路的情形也是这样。在北半球,由于右轨所受压力大于左轨,因而磨损较甚。南半球的情况与此相反,河流左岸冲刷较甚,而双线铁路的左轨磨损较甚。由于这个过程极为复杂,涉及微分知识及坐标系建立,这里就不进一步讨论了。附:科里奥利力科技名词定义中文名称:科里奥利力OmwtvF图3—3—1ω英文名称:Coriolisforce其他名称:地转偏向力定义:由于地球自转运动而作用于地球上运动质点的偏向力。所属学科:大气科学(一级学科);大气(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片科里奥利力科里奥利力(Coriolisforce)有些地方也称作哥里奥利力,简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。科里奥利力来自于物体运动所具有的惯性。认识历史旋转体系中质点的直线运动科里奥利力是以牛顿力学为基础的。1835年,法国气象学家科里奥利提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。物理学中的科里奥利力在旋转体系中进行直线运动的质点,由于惯性,有沿著原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。如右图所示,当一个质点相对于惯性系做直线运动时,相对于旋转体系,其轨迹是一条曲线。立足于旋转体系,我们认为有一个力驱使质点运动轨迹形成曲线,科里奥利这个力就是科里奥利力。根据牛顿力学的理论,以旋转体系为参照系,这种质点的直线运动偏离原有方向的倾向被归结为一个外加力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力一样,都不是真实存在的力,而是惯性作用在非惯性系内的体现。科里奥利力的计算公式如下:F=2mv×ωF=-2mω×v.(fromWiki)式中F为科里奥利力;m为质点的质量;v为质点的运动速度;ω为旋转体系的角速度;×表示两个向量的外积符号。科里奥利力的数学推导科里奥利力实际上是不存在的,是由于人处在转动系中时所认为的匀速直线运动与惯性系中的匀速直线运动不同所致。对于转动系中的人来说,匀速直线运动是指物体相对于转盘的速度不变的运动。而对于在惯性系中的人来说,匀速直线运动是指相对地面速度不变的运动。于是可以通过按照两个参考系的匀速直线运动的标准分别计算极短时间dt内的位移,然后再在转动系中分析这两个位移的差异,进而求出科里奥利力。由于百科这里对公式的支持不佳,详细的推导过程和图文解释请见参考资料[1]。科里奥利力产生的影响1在地球科学领域由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。2傅科摆摆动可以看作一种往复的直线运动,在地球上的摆动会受到地球自转的影响。只要摆面方向与地球自转的角速度方向存在一定的夹角,摆面就会受到科里奥利力的影响,而产生一个与地球自转方向相反的扭矩,从而使得摆面发生转动。1851年法国物理学家傅科预言了这种现象的存在,并且以实验证明了这种现象,他用一根长67米的钢丝绳和一枚27千克的金属球组成一个单摆,在摆垂下镶嵌了一个指针,将这个巨大的单摆悬挂在教堂穹顶之上,实验证实了在北半球摆面会缓缓向右旋转(傅科摆随地球自转)。由于傅科首先提出并完成了这一实验,因而实验被命名为傅科摆实验。3信风与季风地球表面不同纬度的地区接受阳光照射的量不同,从而影响大气的流动,在地球表面延纬度方向形成了一系列气压带,如所谓“极地高

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功