电子科学与技术微电子12019/8/5第10章线性系统频率特性测量和网络分析10.1线性系统频率特性测量10.2网络分析仪电子科学与技术微电子22019/8/510.1线性系统频率特性测量10.1.1幅频特性测量10.1.2扫频测量与扫频源10.1.3相频特性测量电子科学与技术微电子32019/8/5引言频域中的两个基本测量问题信号的频谱分析:可由频谱分析仪完成线性系统频率特性的测量:可由网络分析仪完成什么是线性系统的频率特性?线性网络正弦信号稳态响应H(jω):频率响应或频率特性幅度|H(jω)|:幅频特性相位φ(ω):相频特性电子科学与技术微电子42019/8/510.1.1幅频特性测量点频测量法——线性系统频率特性的经典测量法每次只能将加到被测线性系统的信号源的频率调节到某一个频点。依次设置调谐到各指定频点上,分别测出各点处的参数,再将各点数据连成完整的曲线,从而得到频率特性测量结果。所得频率特性是静态的,无法反映信号的连续变化;测量频点的选择对测量结果有很大影响,特别对某些特性曲线的锐变部分以及失常点,可能会因频点选择不当或不足而漏掉这些测量结果。电子科学与技术微电子52019/8/5幅频特性扫频测量法频率源的输出能够在测量所需的范围内连续扫描,因此可以连续测出各频率点上频率特性结果并立即显示特性曲线。优点:扫频信号的频率连续变化,扫频测量所得的频率特性是动态频率特性,也不会漏掉细节。不足:如果输入的扫频信号频率变化速度快于系统输出响应时间,则频率的响应幅度会出现不足,扫频测量所得幅度小于点频测量的幅度;电路中LC元件的惰性会使幅度峰值有所偏差,因此会产生频率偏离。电子科学与技术微电子62019/8/5两种幅频特性测量法的比较扫频测量所得的动态特性曲线峰值低于点频测量所得的静态特性曲线。扫频速度越快,下降越多.动态特性曲线峰值出现的水平位置(频率)相对于静态特性曲线有所偏离,并向频率变化的方向移动。扫频速度越快,偏离越大.电子科学与技术微电子72019/8/5当静态特性曲线对称时,随着扫频速度加快,动态特性曲线明显出现不对称,并向频率变化的方向一侧倾斜;动态特性曲线较平缓,其3dB带宽大于静态特性曲线的3dB带宽;小结:测量系统动态特性,必须用扫频法;为了得到静态特性,必须选择极慢的扫频速度以得到近似的静态特性曲线,或采用点频法。两种幅频特性测量法的比较(续)电子科学与技术微电子82019/8/510.1.2扫频测量与扫频源基本工作原理扫频源的主要特性获得扫频信号的方法频率标记宽频段扫频方法电子科学与技术微电子92019/8/5扫频源的基本工作原理能产生扫频输出信号的频率源称为扫频信号发生器或扫频信号源,简称扫频源。它既可作为独立的测量用信号发生器,又可作为频率特性测量类仪器的前端。0扫描信号发生器稳幅放大器ALC低通滤波器宽带放大器输出衰减器频标产生电路混频器本振f频标输出X轴扫描输出扫频输出取样检波器扫频振荡器f1-f2电子科学与技术微电子102019/8/5扫频源的基本工作原理(续)扫频振荡器产生扫频信号,上下频限分别为f1-f2。扫描信号发生器产生扫描电压或电流,对振荡器进行电调谐,使扫频振荡器在范围内任意频段上扫变。为自动重复扫频,产生幅度可变的锯齿波驱动显示器。取样检波器用于对扫频输出信号的幅度进行取样检测,和稳幅放大器组成闭环反馈电路,实现自动稳幅控制。本振和混频器是扩展扫频频段输出。电子科学与技术微电子112019/8/5典型的扫频源应具备下列三方面功能:1.产生扫频信号(通常是等幅正弦波);2.产生同步输出的扫描信号,可以是三角波、正弦波或锯齿波等;3.产生同步输出的频率标志,可以是等频率间隔的通用频标、专用于某项测试的专用频标及活动频标。扫频源的基本工作原理(续)电子科学与技术微电子122019/8/5扫频源的主要特性对扫频源通常的技术要求:在预定频带内有足够大的输出功率,且幅度稳定,以获得最大的动态范围;调频线性好,并有经过校正的频率标记,以便确定频带宽度和点频输出;为使测量误差最小,扫频信号中的寄生振荡和谐波均应很小;扫频源输出的中心频率稳定,并可以任意调节;频率偏移的范围越宽越好,并可以任意调节。电子科学与技术微电子132019/8/5有效扫频宽度扫频线性输出振幅平稳性扫频源的主要特性(续)121202ffffffmin0max0kk线性系数%1002121AAAAM调幅系数f0:扫频输出中心频率f1:扫频起点;f2:扫频终点k0:压控特性f-V曲线的斜率A1:寄生调幅最大幅度A2:寄生调幅最小幅度电子科学与技术微电子142019/8/5获得扫频信号的方法变容二极管电调扫频常见于射频至微波段。实现简单、输出功率适中、扫频速度较快;扫频宽度小,在宽带扫频时线性差,需额外进行扫频线性补偿。YIG(钇铁石榴石铁氧体)电调扫频常用于产生GHz以上频段的信号,利用下变频可实现宽带扫频。可覆盖高达10倍频程的频率范围,扫频线性好、损耗低、稳定性好。合成扫频源实际上是一种自动跳频的连续波工作方式,频率不完全连续变化,输出频率准确。电子科学与技术微电子152019/8/5频率标记频率标记是扫频测量中的频率定度。产生频标的基本方法是差频法,利用差频方式可产生一个或多个频标,频标的数目取决于和扫频信号混频的基准频率的成分。基本要求:所用的频率基准的频率稳定度和准确度较高频标幅度应基本一致、显示整齐不包含杂频和泄漏进来的扫频信号多种频标形式以满足不同的显示和测量需要电路时延尽可能小以减小频率定度误差电子科学与技术微电子162019/8/5频率标记(续)菱形频标利用差频法得到,适用于测量高频段的频率特性。对作为基准频率进行限幅、整形和微分,形成含有很多谐波成分的尖脉冲,再和扫频信号混频。脉冲频标由菱形频标变换而来的。将菱形频标送去触发单稳电路并产生输出,整形后形成极窄的矩形脉冲频标,也叫针形频标。宽度较菱形频标窄,在测量低频电路时分辨力更高。线形频标状如一条条极细的垂直亮线,是光栅增辉式显示器特有的频标形式。电子科学与技术微电子172019/8/5宽频段扫频方法差频式宽频段扫频定频振荡器扫频本振低通滤波宽带放大宽带输出将固定频率的振荡器与作为本振信号的扫频振荡源在混频器上取差频。只要使定频振荡器的输出电平远小于扫频本振的电平,则差频信号的幅度便由定频振荡器的幅度决定,扫频过程中差频幅度可基本保持不变。电子科学与技术微电子182019/8/5宽频段扫频方法(续1)全基波多频段联合式扫频频段YIG扫频源低通滤波器PIN开关本振1第输出多段扫频输入多路PIN开关低通滤波器低通滤波器电子科学与技术微电子192019/8/5全基波多频段联合式扫频将频段相衔接的几个单频段基波扫频振荡器组件封装起来,用逻辑电路控制微波开关,因此可以任意选用某个频段的振荡器输出,也可使几个振荡器依次产生连续的输出频率,实现宽频带扫频。在上图所示的宽频带扫频方案中,多个输出频率相接的YIG调谐基波扫频源结合在一起,由控制信号通过PIN开关进行选择、组合,按需提供单频段或多频段联合的扫频输出。两个定向耦合器与两个检波器的组合用于对高、低频段稳幅信号取样。电子科学与技术微电子202019/8/5宽频段扫频方法(续2)多倍频程宽带扫频以较宽频带的基波扫频振荡器为基础,除了直接输出这个低频段信号外,还可将它加到可选倍率n的倍频器中以产生若干个较高频段。基波回路与倍频器是同时调谐的。这种倍频式(谐波式)宽带扫频源较全基波式构造简单,但在高频段输出时可能夹杂来自低频段的部分谐波频率寄生信号;另外,倍频之后的信号寄生调频及噪声也随之倍增。电子科学与技术微电子212019/8/510.1.3相频特性测量测量线性系统的相频特性时,常以被测电路输入端的信号作为参考信号,输出端信号作为被测信号,所测的输入/输出相位差就是电路的相频特性点。相位测量同样可采用点频或扫频法以获得相频特性曲线:扫频法所得的相频特性主要是被测网络的相位和时延特性的动态测量;本节主要讨论对单频点上的网络时延特性和相位差进行点频测量,以及用于点频测量的相频特性测量仪器,常见的有如低频段的模拟式相位计、数字式相位计,高频段的矢量电压表等。电子科学与技术微电子222019/8/5双稳型鉴相器也称双稳型鉴相器,是模拟式相位计。采用“过零时间法”实现相位差测量,即测量两个同频信号波形的同向过零点之间的时间间隔并与被测信号周期相比,从而得到相位差值。Q方波形成方波形成QSRA微分微分限幅限幅双稳态触发器_Iu1u2aa'bb'cc'电子科学与技术微电子232019/8/5数字式相位计有两种:相位-时间变换型将两个信号的相位差转换成时间差,再用计数器测量该时间间隔;相位-电压变换型将相位差转换成相应的电压值,然后用数字电压表完成测量。瞬时值型数字相位计属于相位-时间变换型。由于被测信号在传输过程中的干扰会直接影响计数门的开启和关闭时间,因此瞬时值型相位计的测量结果较不稳定。可以采用多次测量求平均的办法以提高测量精度。电子科学与技术微电子242019/8/5瞬时值型数字相位计u1作为参考的信号在通道1中,用作计数门的启动信号。u1、u2间的相位差首先被处理成两个过零脉冲的时间间隔ΔT,其中由u1产生的过零脉冲启动主计数门,由u2产生的过零脉冲负责关闭计数门。oSxoxNffTT360360若计数门的计数值为N,则相位差的计算式为:通道1通道2门控电路主计数门标准脉冲发生器十进制计数器显示器ΔTu1u2fS电子科学与技术微电子252019/8/5矢量电压表矢量电压表是一种能同时测量信号幅度和相位的测量仪器,本质上属于矢量网络分析仪。移相器-120移相器+60带通滤波器o自动相位控制VCO参考本振电压表方波发生电路触发脉冲形成相位显示双稳态触发型相位计触发脉冲形成方波发生电路带通滤波器中频输出2中频输出1取样头1u1取样头2u2相位调零取样脉冲发生器o电子科学与技术微电子262019/8/5矢量电压表(续)矢量电压表较多采用的相频特性测量方法是脉冲触发式。上图是一种宽频带双通道矢量电压表,其相位差测量范围为-180o~+180o。高频信号u1、u2分别加到两个取样头变换为固定的中频信号,同时保持了高频输入原有的波形、幅度及信号间的相位关系。取样后的中频信号经过带通滤波器进行电压幅度测量,同时被整形为方波,然后进入双稳态触发型相位计中实现相位测量。固定的中频信号单独输出还可用于调幅度及波形失真等参数的测量。电子科学与技术微电子272019/8/510.2网络分析仪10.2.1网络分析的基本概念10.2.2网络分析系统10.2.3反射参数测量10.2.4传输参数测量10.2.5S参数的全面测量及误差修正电子科学与技术微电子282019/8/510.2.1网络分析的基本概念网络分析概述微波网络S参数S参数的流图表示及计算频谱测量表征电路单元的信号特性,而网络测量表征电路单元组成的系统特性。网络——对实际物理电路和元件进行的数学抽象,主要研究外部特性。网络分析——在感兴趣的频率范围内,通过线性激励-响应测试确定元件的幅频特性和相频特性的过程。网络分析仪——通过正弦扫频测量获得线性网络的传递函数以及阻抗函数的仪器。电子科学与技术微电子292019/8/5网络分析概述线性网络与非线性网络线性网络(系统):仅改变输入信号的幅度和(或)相位,不会产生新的频率信号;非线性网络(系统):改变输入信号的频率,或产生其他频率成分。网络分析总是假定被分析网络是线性的,因而可以基于正弦扫频法进行频率特性的定量分析。非线性网络通常使用频谱仪进行测量。电子科学与技术微电子302019/8/5线性网络与非线性网络(续)如果通过网络传输的信号没有产生失真,DUT的幅频响应特性曲线应该是平坦的,相频响应曲线在整个带宽内呈线性。如果输出波形有任何畸变,变化程度取决与幅度和相位的非线性。网络分析总是假定被分析电路或网络是线性的。可以基于正弦扫频测量方法继续频率特性的定量分析。对非线性网络,