位似1.前面我们已经学习了图形的哪些变换?平移:平移的方向,平移的距离.注:图形这些不同的变换是我们学习几何必不可少的重要工具,它不但装点了我们的生活,而且是学习后续知识的基础.回顾与反思相似:相似比.旋转:旋转中心,旋转方向,旋转角度.(特殊地,中心对称)翻折:轴对称与轴对称图形观察与思考☞下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对对应点的连线有什么特征?概念与性质1.位似图形的概念如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.相似对应点的连线相交一点对应边平行1.判断下列各对图形是不是位似图形.(1)正五边形ABCDE与正五边形A′B′C′D′E′;辨一辨(2)等边三角形ABC与等边三角形A′B′C′.思考:是否相似图形都是位似图形?是是判断下面的正方形是不是位似图形?(1)不是ACDBFEG显然,位似图形是相似图形的特殊情形.相似图形不一定是位似图形,可位似图形一定是相似图形思考:位似图形有何性质?2.位似图形的性质从第(1),(2)图中,我们可以看到,△OAB∽△OA′B′,则OAOA′=OBOB′=ABA′B′.从第(3)图中同样可以看到AFAD=APAC=AEAB=EPBC=FPDC性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.概念与性质•若△ABC与△A’B’C’的相似比为:1:2,则OA:OA’=()。OAA’BCB’C’1:2O.ABCA'C’B’.练习与拓展1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍.OA:OA’=OB:OB’=OC:OC’=1:2思考:还有没其他作法?O.ABA'C’B’C如果位似中心跑到三角形内部呢?对称点位于位似中心的同侧若对称点分居在位似中心的异侧呢?如图,在已知锐角三角形ABC内作一个正方形DEFG,使点E、F在BC边上,点D在AB边上,点G在AC边上。(不写作法,只要求正确作出图形)CBA已知锐角∆ABC,求作矩形MNPQ,使NP在BC上,点M和点Q分别在AB、AC上,且使MN:NP=1:2。BCA回味无穷•位似图形的概念:•如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.•位似图形的性质:•1.位似图形上的任意一对对应点到位似中心的距离之比等于位似比•课堂小结作业:完成思考题以及课本65页第2题