高考数学考前冲刺一12类二级结论高效解题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

考前冲刺一12类二级结论高效解题高中数学二级结论在解题中有其高明之处,不仅简化思维过程,而且可以提高解题速度和准确度,记住这些常用二级结论,可以帮你理清数学套路,节约做题时间,从而轻松拿高分.结论1奇函数的最值性质已知函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.答案2【例1】设函数f(x)=(x+1)2+sinxx2+1的最大值为M,最小值为m,则M+m=________.解析显然函数f(x)的定义域为R,f(x)=(x+1)2+sinxx2+1=1+2x+sinxx2+1,设g(x)=2x+sinxx2+1,则g(-x)=-g(x),∴g(x)为奇函数,由奇函数图象的对称性知g(x)max+g(x)min=0,∴M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.A.-1B.0C.1D.2【训练1】已知函数f(x)=ln(1+9x2-3x)+1,则f(lg2)+flg12=()答案D解析令g(x)=ln(1+9x2-3x),x∈R,则g(-x)=ln(1+9x2+3x),因为g(x)+g(-x)=ln(1+9x2-3x)+ln(1+9x2+3x)=ln(1+9x2-9x2)=ln1=0,所以g(x)是定义在R上的奇函数.又lg12=-lg2,所以g(lg2)+glg12=0,所以f(lg2)+flg12=g(lg2)+1+glg12+1=2.结论2函数周期性问题已知定义在R上的函数f(x),若对任意的x∈R,总存在非零常数T,使得f(x+T)=f(x),则称f(x)是周期函数,T为其一个周期.常见的与周期函数有关的结论如下:(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(2)如果f(x+a)=1f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.A.-2B.-1C.0D.1(2)(多选题)(2020·济南模拟)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数【例2】(1)已知定义在R上的函数f(x)满足fx+32=-f(x),且f(-2)=f(-1)=-1,f(0)=2,则f(1)+f(2)+f(3)+…+f(2019)+f(2020)=()解析(1)因为fx+32=-f(x),所以f(x+3)=-fx+32=f(x),则f(x)的周期T=3.则有f(1)=f(-2)=-1,f(2)=f(-1)=-1,f(3)=f(0)=2,所以f(1)+f(2)+f(3)=0,所以f(1)+f(2)+f(3)+…+f(2019)+f(2020)=f(1)+f(2)+f(3)+…+f(2017)+f(2018)+f(2019)+f(2020)=673×[f(1)+f(2)+f(3)]+f(2020)=0+f(1)=-1.(2)法一由f(x+1)与f(x+2)都为奇函数知,函数f(x)的图象关于点(1,0),(2,0)对称,所以f(-x)+f(2+x)=0,f(-x)+f(4+x)=0,所以f(2+x)=f(4+x),即f(x)=f(2+x),所以f(x)是以2为周期的周期函数.又f(x+1)与f(x+2)都为奇函数,所以f(x),f(x+3),f(x+4)均为奇函数.故选ABC.法二由f(x+1)与f(x+2)都为奇函数知,函数f(x)的图象关于点(1,0),(2,0)对称,所以f(x)的周期为2|2-1|=2,所以f(x)与f(x+2),f(x+4)的奇偶性相同,f(x+1)与f(x+3)的奇偶性相同,所以f(x),f(x+3),f(x+4)均为奇函数.故选ABC.答案(1)B(2)ABC【训练2】奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2B.-1C.0D.1解析由f(x+2)是偶函数可得f(-x+2)=f(x+2),又由f(x)是奇函数得f(-x+2)=-f(x-2),所以f(x+2)=-f(x-2),f(x+4)=-f(x),f(x+8)=f(x).故f(x)是以8为周期的周期函数,所以f(9)=f(8+1)=f(1)=1.又f(x)是定义在R上的奇函数,所以f(0)=0,所以f(8)=f(0)=0,故f(8)+f(9)=1.答案D结论3函数的对称性已知函数f(x)是定义在R上的函数.(1)若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x=a+b2对称,特别地,若f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称.(2)若函数y=f(x)满足f(a+x)+f(a-x)=0,即f(x)=-f(2a-x),则f(x)的图象关于点(a,0)对称.(3)若f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.【例3】(1)函数y=f(x)对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.(2)(多选题)已知定义在R上的函数f(x)满足f(x)=2-f(2-x),且f(x)是偶函数,下列说法正确的是()A.f(x)的图象关于点(1,1)对称B.f(x)是周期为4的函数C.若f(x)满足对任意的x∈[0,1],都有f(x2)-f(x1)x1-x20,则f(x)在[-3,-2]上单调递增D.若f(x)在[1,2]上的解析式为f(x)=lnx+1,则f(x)在[2,3]上的解析式为f(x)=1-ln(x-2)解析(1)因为函数y=f(x-1)的图象关于点(1,0)对称,所以f(x)是R上的奇函数,又f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)的周期为4.所以f(2017)=f(504×4+1)=f(1)=4,所以f(2016)+f(2018)=-f(2014)+f(2014+4)=-f(2014)+f(2014)=0,所以f(2016)+f(2017)+f(2018)=4.答案(1)4(2)ABC(2)根据题意,f(x)的图象关于点(1,1)对称,A正确;又f(x)的图象关于y轴对称,所以f(x)=f(-x),则2-f(2-x)=f(-x),f(x)=2-f(x+2),从而f(x+2)=2-f(x+4),所以f(x)=f(x+4),B正确;由f(x2)-f(x1)x1-x20可知f(x)在[0,1]上单调递增,又f(x)的图象关于点(1,1)对称,所以f(x)在[1,2]上单调递增,因为f(x)的周期为4,所以f(x)在[-3,-2]上单调递增,C正确;因为f(x)=f(-x),x∈[-2,-1]时,-x∈[1,2],所以f(x)=f(-x)=ln(-x)+1,x∈[-2,-1],因为f(x)的周期为4,f(x)=f(x-4),x∈[2,3]时,x-4∈[-2,-1],所以f(x)=f(x-4)=ln(4-x)+1,x∈[2,3],D错误.综上,正确的是ABC.【训练3】(1)若函数y=f(x)的图象如图所示,则函数y=f(1-x)的图象大致为()(2)若偶函数y=f(x)的图象关于直线x=2对称,且f(3)=3,则f(-1)=________.解析(1)作出y=f(x)的图象关于y轴对称的图象,得到y=f(-x)的图象,将y=f(-x)的图象向右平移1个单位,得y=f[-(x-1)]=f(1-x)的图象.因此图象A满足.(2)因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(x+4),则f(-1)=f(3)=3.答案(1)A(2)3结论4两个经典不等式(1)对数形式:x≥1+lnx(x0),当且仅当x=1时,等号成立.(2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:exx+1x1+lnx(x0,且x≠1).【例4】已知函数f(x)=x-1-alnx.(1)若f(x)≥0,求a的值;(2)证明:对于任意正整数n,1+121+122…1+12ne.(1)解f(x)的定义域为(0,+∞),①若a≤0,因为f12=-12+aln20,所以不满足题意.②若a0,由f′(x)=1-ax=x-ax知,当x∈(0,a)时,f′(x)0;当x∈(a,+∞)时,f′(x)0;所以f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,故x=a是f(x)在(0,+∞)的唯一最小值点.因为f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.(2)证明由(1)知当x∈(1,+∞)时,x-1-lnx0.令x=1+12n,得ln1+12n12n.从而ln1+12+ln1+122+…+ln1+12n12+122+…+12n=1-12n1.故1+121+122…1+12ne.【训练4】(1)已知函数f(x)=1ln(x+1)-x,则y=f(x)的图象大致为()答案B解析由x+10,ln(x+1)-x≠0,得{x|x-1,且x≠0},所以排除选项D.当x0时,由经典不等式x1+lnx(x0),以x+1代替x,得xln(x+1)(x-1,且x≠0),所以ln(x+1)-x0(x-1,且x≠0),排除A,C,易知B正确.(2)已知函数f(x)=ex,x∈R.证明:曲线y=f(x)与曲线y=12x2+x+1有唯一公共点.证明令g(x)=f(x)-12x2+x+1=ex-12x2-x-1,x∈R,则g′(x)=ex-x-1,由经典不等式ex≥x+1恒成立可知,g′(x)≥0恒成立,所以g(x)在R上为增函数,且g(0)=0.所以函数g(x)有唯一零点,即两曲线有唯一公共点.结论5三点共线的充要条件设平面上三点O,A,B不共线,则平面上任意一点P与A,B共线的充要条件是存在实数λ与μ,使得OP→=λOA→+μOB→,且λ+μ=1.特别地,当P为线段AB的中点时,OP→=12OA→+12OB→.【例5】在△ABC中,AE→=2EB→,AF→=3FC→,连接BF,CE,且BF与CE交于点M,AM→=xAE→+yAF→,则x-y等于()A.-112B.112C.-16D.16解析因为AE→=2EB→,所以AE→=23AB→,所以AM→=xAE→+yAF→=23xAB→+yAF→.由B,M,F三点共线得23x+y=1.①因为AF→=3FC→,所以AF→=34AC→,所以AM→=xAE→+yAF→=xAE→+34yAC→.由C,M,E三点共线得x+34y=1.②联立①②解得x=12,y=23,所以x-y=12-23=-16.答案C解析如图,连接MN并延长交AB的延长线于T.【训练5】在梯形ABCD中,已知AB∥CD,AB=2CD,M,N分别为CD,BC的中点.若AB→=λAM→+μAN→,则λ+μ=________.由已知易得AB=45AT,∴45AT→=AB→=λAM→+μAN→,∴AT→=54λAM→+54μAN→,∵T,M,N三点共线,∴54λ+54μ=1,∴λ+μ=45.答案45结论6三角形“四心”向量形式的充要条件设O为△ABC所在平面上一点,内角A,B,C所对的边分别为a,b,c,则(1)O为△A

1 / 57
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功