中考数学专题训练(附详细解析)中位线1、(专题•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°考点:三角形中位线定理;平行线的性质;三角形内角和定理.分析:在△ADE中利用内角和定理求出∠AED,然后判断DE∥BC,利用平行线的性质可得出∠C.解答:解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故选C.点评:本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半.2、(专题•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6B.8C.10D.12考点:三角形中位线定理;三角形三边关系.分析:本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了.解答:解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,14<三角形的周长<20,故7<中点三角形周长<10.故选B.点评:本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.3、(专题•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3B.2:3C.1:4D.2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3.解答:解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选A.点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.4、(专题•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9B.10.5C.12D.15考点:梯形中位线定理.分析:根据梯形的中位线等于两底和的一半解答.解答:解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.点评:本题主要考查了梯形的中位线定理,熟记梯形的中位线平行于两底边并且等于两底边和的一半是解题的关键.5、(专题•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5B.5C.4.5D.4考点:三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系.3718684分析:首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定.解答:解:解方程x2﹣8x+15=0得:x1=3,x2=5,则第三边c的范围是:2<c<8.则三角形的周长l的范围是:10<l<16,∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8.故满足条件的只有A.故选A.点评:本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.6、(专题•张家界)顺次连接等腰梯形四边中点所得的四边形一定是()A.矩形B.正方形C.菱形D.直角梯形考点:中点四边形.3718684分析:根据等腰梯形的性质及中位线定理和菱形的判定,可推出四边形为菱形.解答:解:如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,求证:四边形EFGH是菱形.证明:连接AC、BD.∵E、F分别是AB、BC的中点,∴EF=AC.同理FG=BD,GH=AC,EH=BD,又∵四边形ABCD是等腰梯形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形.故选C.点评:此题主要考查了等腰梯形的性质,三角形的中位线定理和菱形的判定.用到的知识点:等腰梯形的两底角相等;三角形的中位线平行于第三边,并且等于第三边的一半;四边相等的四边形是菱形.7、(专题•绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A.1B.C.D.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.解答:解:∵点E,F分别是边AD,AB的中点,∴AH=HO,∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,∴CH=3AH,∴=.故选C.点评:本题考查了平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键.8、(专题哈尔滨)如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为().(A)12(B)13(C)14(D)23考点:相似三角形的性质。,三角形的中位线分析:利用相似三角形的判定和性质是解题的关键解答:由MN是三角形的中位线,2MN=BC,MN∥BC∴△ABC∽△AMN∴三角形的相似比是2:1,∴△ABC与△AMN的面积之比为4:1.,则△AMN的面积与四边形MBCN的面积比为13,故选B9、(专题深圳市)如图1,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或32B.10或324C.10或32D.8或324答案:D解析:如下图,BC=2,DE=1,AB=4,AC=23。(1)AE与EC重合时,周长为:8;(2)AD与BD重合时,周长为:4+23所以,选D。10、(专题广州市)如图5,四边形ABCD是梯形,AD∥BC,CA是BCD的平分线,且,4,6,ABACABAD则tanB=()A23B22C114D554分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴EF=DF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tanB===2.故选B.点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F是AC中点,难度较大.11、(专题•烟台)如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为15.考点:三角形中位线定理;平行四边形的性质.分析:根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.解答:解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案是:15.点评:本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.12、(专题•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是20;四边形A专题B专题C专题D专题的周长是.考点:中点四边形;菱形的性质.专题:规律型.分析:根据菱形的性质以及三角形中位线的性质以及勾股定理求出四边形各边长得出规律求出即可.解答:解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,∴A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,∴四边形A2B2C2D2的周长是:5×4=20,同理可得出:A3D3=5×,C3D3=AC=×5,A5D5=5×()2,C5D5=AC=()2×5,…∴四边形A专题B专题C专题D专题的周长是:=.故答案为:20,.点评:此题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.13、(专题•滨州)在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=5.考点:三角形中位线定理;平行四边形的性质.分析:先画出图形,根据平行线的性质,结合点E是边CD的中点,可判断OE是△DBC的中位线,继而可得出OE的长度.解答:解:∵四边形ABCD是平行四变形,∴点O是BD中点,∵点E是边CD的中点,∴OE是△DBC的中位线,∴OE=BC=5.故答案为:5.点评:本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O是BD中点,得出OE是△DBC的中位线.14、(专题鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.15、(专题•淮安)如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC=6.考点:三角形中位线定理.3718684分析:根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.解答:解:∵点D、E分别是AB、AC的中点,∴DE是△AB