2021/3/32021/3/32.判定两个三角形全等要具备什么条件?2021/3/3有三边对应相等的两个三角形全等。边边边:2021/3/3有两边和它们夹角对应相等的两个三角形全等。边角边:2021/3/3一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?怎么办?可以帮帮我吗?2021/3/3CBEAD2021/3/3先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?探究12021/3/3已知:任意△ABC,画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B:画法:2、在A/B/的同旁画∠DA/B/=∠A,∠EB/A/=∠B,A/D,B/E交于点C/。1、画A/B/=AB;△A/B/C/就是所要画的三角形。问:通过实验可以发现什么事实?2021/3/3有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。探究反映的规律是:2021/3/3例题讲解:例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C。求证:BD=CE证明:在△ADC和△AEB中∠A=∠A(公共角)AC=AB(已知)∠C=∠B(已知)∴△ACD≌△ABE(ASA)∴AD=AE(全等三角形的对应边相等)又∵AB=AC(已知)∴BD=CEDBEAOC2021/3/31.如图,∠1=∠2,∠3=∠4求证:AC=AD证明:∵∠ABD=180-∠3∠ABC=180-∠4而∠3=∠4(已知)∴∠ABD=∠ABC在△ABD和△ABC中∠1=∠2(已知)AB=AB(公共边)∠ABD=∠ABC(已知)∴△ABD≌△ABC(ASA)∴AC=AD(全等三角形对应边相等)巩固练习CADB12342021/3/3在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF2021/3/3例题讲解:例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AD=AE,∠B=∠C。求证:BD=CE证明:在△ADC和△AEB中∠A=∠A(公共角)AD=AE(已知)∠C=∠B(已知)∴△ACD≌△ABE(AAS)∴AB=AC(全等三角形的对应边相等)又∵AD=AE(已知)∴BD=CEDBEAOC2021/3/3知识应用1.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长。为什么?ABCDEF2021/3/32.已知,如图,∠1=∠2,∠C=∠D求证:AC=AD在△ABD和△ABC中∠1=∠2(已知)∠C=∠D(已知)AB=AB(公共边)∴△ABD≌△ABC(AAS)∴AC=AD(全等三角形对应边相等)证明:CADB122021/3/3(1)学习了ASA和AAS。(2)由实践证明角边角是真命题。(3)要根据题意选择适当的方法。(4)证明线段或角相等,就是证明它们所在的两个三角形全等。2021/3/32021/3/3【问题1】本章学习了哪些知识?它们之间的联系是什么?2021/3/32021/3/3例1下列长度的三条线段能组成三角形的是()A.1cm,2cm,3.5cmB.4cm,5cm,9cmC.5cm,8cm,15cmD.6cm,8cm,9cm【问题2】三角形的三边的关系是什么?D2021/3/3例2一个三角形的两条边的长分别为3和5.⑴求第三边x的长的取值范围;⑵若这个三角形是等腰三角形,求这个三角形的周长.28x解:当腰长为3时,这个三角形的周长为11;当腰长为5时,这个三角形的周长为13.2021/3/3【问题3】怎样运用三角形的内角和定理及外角性质解决问题?例3⑴在△ABC中,∠A=3∠B=120°,求∠C的度数.2021/3/3⑵如图,已知AC∥ED,∠C=26°,∠BED=63°,求∠B的度数.ABCDE解:∵AC∥ED,∴∠CAE=∠BED=63°.∵∠CAE=∠B+∠C,∴∠C=∠CAE-∠B=63°-26°=37°.2021/3/3【问题4】应用多边形的内角和、外角和解决哪些问题?例4⑴若一个多边形的内角和与它的外角和之和是1800°,这个多边形的边数.解:设这个多边形的边数为n,由题意得(2)1803601800n解得所以这个多边形是十边形.10.n2021/3/3⑵如图,小陈从O点出发,前进了5米后向右转20°的角,再前进5米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了多少米?O解:由题意可知这个正多边形的每个外角都是20°.360°÷20°=18.5×18=90(米).2021/3/3【问题5】三角形的三条重要线段有哪些?例5如图,AD是△ABC的高,∠C=65°,∠ABD=∠BAD,求∠BAC的度数.ABDC解:∵AD是△ABC的高,∴∠ADC=90°,∴∠DAC=25°.∵∠ADC=∠B+∠BAD=90°,∴∠BAD=45°,∠ABD=∠BAD,∴∠BAD=∠CAD+∠BAD=45°+25°=70°.2021/3/3例6如图a,在△ABC中,∠ABC、∠ACB的平分线相交于点O.图aABCO①若∠ABC=40°,∠ACB=50°,则∠BOC的度数为;②若∠A=76°,则∠BOC的度数为;135°128°2021/3/3③你能找出∠A与∠BOC之间的数量关系吗?说明理由.图aABCO解:A.BOC°2190A.AACBABCBOC°°°°2190)180(21180)2121(1802021/3/3(2)如图b,点O是△ABC的两外角平分线BO、CO的交点,那么∠BOC与∠A有怎样的数量关系?并说明理由.图bABCO解:A.BOC°2190[]A.AACBABCBCEDBCBOC°°°°°°°°2190)180(36021180)180180(21180)2121(1802021/3/32021/3/3作业复习题7的第4、5、6、7、8题.第9、10题选做.