经过线性变换二次型化为例12(,)fxx12xx12yy12yy12xx12yy1111f212()yyTXXAXCY222y1122()yyyy122xx1122()xxxx0011212y0022TYYBBTCAC12()yy则ACB12,,...,()nfxxx12...(,,,)nxxxnnnnnnaaaaaaaaa.........21222211121112nxxx给定二次型设该二次型111212122212.........nnnnnnccccccccc12nyyy12nxxx12(,,...,)ngyyy11121211213113...nnbbbyyyyyyyb21222221223223...nnybbbbyyyyyy.............21212...nnnnnnnybbbyyyy化为:BTCAC则12(,,...,)nyyy111212122212.........nnnnnnbbbbbbbbb12nyyyACBXCY经过线性替换TXXATYYB且()()ArrB定义5.3定理如果存在n阶使得则称矩阵A与B合同,原二次型的矩阵合同。可逆矩阵C,设A,B是两个n阶矩阵,经过非退化线性替换,与新二次型的矩阵记为A~BABBTCAC,120...00...00...00...000...0...000...00...000...00...0rddd12(,,...,)nyyynrryyyyy12112(,,...,,...)rnyyyy222dy12(,,...,)nfyyy定义2212212...rrdyyddy的二次型只含平方项,11dy22dyrrdy00211dy2...rrdy§5.2二次型的标准形与规范形形式为不含交叉项2221122...rrdydydy的秩为r称为标准形.12,...,rddd,0TYBY120...00...00...00...000...0...000...00...000...00...0rddd12(,,...,)nyyynrryyyyy12112(,,...,,...)rnyyyy222dy12(,,...,)nfyyy定义2212212...rrdyyddy的二次型每一个标准形每一对角矩阵只含平方项,11dy22dyrrdy00211dy2...rrdy形式为不含交叉项对应一个标准形.是对角矩阵.2221122...rrdydydy的秩为r称为标准形.对应的矩阵12,...,rddd,0TYBY可写为此标准形化为定义的二次型称为实数域上令是一个标准形.222212342395xxxx212x245x223x233x22221234yyyy222211......ppryyyy二次型的规范形.形式为1y12x2y45x3y23x4y33x即1234yyyy1234xxxx2000000503000030定义的二次型称为实数域上其中正项的个数负项个数称为二次型的称为二次型的r是二次型的秩.222211......ppryyyy二次型的规范形.正惯性指标,负惯性指标.形式为称为符号差.p()rprpp其对应的矩阵为:111100r个p个1r-p个-1在复数范围内,此标准形化为形式为二次型的规范形.令以上二次型可写为的二次型复数域上222212342395xxxx212x223ix233ix245x22221234zzzz22212...rzzz112zx223zix333zix445zx本书均指实数域上的规范形.定义称为能否通过非退化线性替换如果能够,用什么方法化为标准形?一个二次型化成标准形?二次型通过非退化线性替换化成标准形对称矩阵A合同到对角矩阵B.又如何化为规范型?12,,...,()nfxxx12,,...(),nxxxnnnnnnaaaaaaaaa.........21222211121112nxxx给定二次型TXAX如果经过线性替换111212122212.........nnnnnnccccccccc12nyyy12nxxx2222211...rrddyydy化为:TYBYXCYBTCAC则12,,...(),nyyy12nyyyACB120...00...00...00...000...0...000...00...000...00...0rddd120...00...00...00...000...0...000...00...000...00...0rdddABA与对角矩阵合同.1200rddd12(,,...,)nyyynrryyyyy1212221212...rrddfyyyd实对称矩阵A存在可逆矩阵C,1200rdddTCAC经过非退化线性替换XYC二次型f化为:TCAC使得二次型12(,,...,)nfxxxTXAX(一)用配方法化二次型为标准形(二)用初等变换法化二次型为标准形(三)用正交替换法化二次型为标准形二次型通过非退化线性替换化成标准形有三种方法:例化为标准形,2221234fyyy标准形令1.用配方法化二次型为标准形23()xx123(,,)fxxx22212312132334226xxxxxxxxx21()x122xx132xx223x234x236xx21x12x223()xx223()xx223x234x236xx2123()xxx224x233x234xx2123()xxx23x22(4)x234xx23x2123()xxx2232xx233x234x123xxx213yyy232xx3x二次型化为并写出所作的非退化线性替换.将123(,,)fxxx解例将化为标准形,),,(321xxxf解2221234fyyy令123(,,)fxxx22212312132334226xxxxxxxxx2123()xxx2232xx234x123xxx213yyy232xx3x二次型化为并写出所作的非退化线性替换.3y231122yy213xxx1y所作的非退化线性替换为231322yy例123(,,)fxxx121323224xxxxxx化为标准形,并写出所作的非退化线性替换.解令12yy123xxx12yy3y二次型化为12yy12yy212yy3y412yy3y22212yy将212y222y132yy236yy212y13yy222y236yy234y232y2132yy236yy123xxx123yyy1101100001221y例123(,,)fxxx121323224xxxxxx化为标准形,并写出所作的非退化线性替换.解令12yy123xxx12yy3y二次型化为将212y13yy222y236yy234y232y123(,,)fxxx32y233yy232y222y2392y23122yy22332y2y234y2394y例123(,,)fxxx121323224xxxxxx化为标准形,并写出所作的非退化线性替换.解令二次型化为将123(,,)fxxx23122yy22332y2y234y令二次型化为212z222z234z3z123yyy1312zz2332zz123xxx12yy12yy3y123zzz1312yy2332yy3y例123(,,)fxxx121323224xxxxxx令123xxx二次型化为11011000111023012001123xxx123yyy12yy12yy3y123yyy123zzz123yyy1312zz2332zz3z123xxx123110110001yyy11232231001001zzz001所作的非退化线性替换为123xxx123zzz1232zzz123zzz3z112111122223224zzz例123(,,)fxxx121323224xxxxxx化为规范形,并写出所作的非退化线性替换.解令12yy123xxx12yy3y二次型化为将222y234y令二次型化为123zzz23122yy2232y222y13122yy332y32y332y23322yy21z22z23z212z312z332y123yyy112z312y214z12y32y234z规范形例123(,,)fxxx121323224xxxxxx令二次型化为21z22z23z212z312z332y123yyy112z312y214z234z123xxx12yy12yy3y110110001123xxx123yyy123yyy11042123zzz310421002123zzz123zzz12112121212100231042100211042所作的非退化线性替换为123xxx1231122zzz123111222zzz212z标准形唯一吗?23)2(2x标准形不唯一.是规范形.正