北大光华金融硕士统计学考研讲义-多元回归分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

新祥旭北京大学光华考研统计学考研辅导班讲义多元线性回归模型多元线性回归模型多元线性回归模型的参数估计多元线性回归模型的假设检验实例§1多元线性回归模型一、多元线性回归模型二、多元线性回归模型的基本假定一、多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式:ikikiiiXXXY22110i=1,2…,n其中:k为解释变量的数目,j称为回归参数(regressioncoefficient)。一、多元线性回归模型多元线性回归模型:表现在线性回归模型中的解释变量有多个。一般表现形式:ikikiiiXXXY22110i=1,2…,n其中:k为解释变量的数目,j称为回归参数(regressioncoefficient)。ikikiiiXXXY22110总体回归函数为:kikiikiiiiXXXXXXYE2211021),,|(总体回归函数的随机表达形式为可以看到是对应于一元线形回归模型的,是一元线性回归模型的自然引申与扩展!j也被称为偏回归系数,表示在其他解释变量保持不变的情况下,Xj每变化1个单位时,Y的均值E(Y)的变化;或者说j给出了Xj的单位变化对Y均值的“直接”或“净”(不含其他变量)影响。kikiiiiXXXYˆˆˆˆˆ22110其随机表示式:ikikiiiieXXXYˆˆˆˆ22110ei称为残差或剩余项(residuals),可看成是总体回归函数中随机扰动项i的近似替代。用于估计总体回归函数的样本回归函数是二、多元线性回归模型的基本假定假设1,解释变量是非随机的或固定的,且各X之间互不相关(无多重共线性)。假设2,随机误差项具有零均值、同方差及不序列相关性。0)(iE22)()(iiEVar0)(),(jijiECovnjiji,,2,1,假设3,解释变量与随机项不相关0),(ijiXCovkj,2,1假设4,随机项满足正态分布),0(~2Ni§2多元线性回归模型的估计一、普通最小二乘估计二、参数估计量的性质三、样本容量问题四、估计实例说明估计方法:OLS(普通最小二乘法)一、普通最小二乘估计对于随机抽取的n组观测值kjniXYjii,2,1,0,,,2,1),,(如果样本函数的参数估计值已经得到,则有:KikiiiiXXXYˆˆˆˆˆ22110i=1,2…n•根据最小二乘原理,参数估计值应该是右列方程组的解0ˆ0ˆ0ˆ0ˆ210QQQQk其中2112)ˆ(niiiniiYYeQ2122110))ˆˆˆˆ((nikikiiiXXXY•于是得到关于待估参数估计值的正规方程组:kiikikikiiiiikikiiiiiikikiiikikiiXYXXXXXYXXXXXYXXXXYXXX)ˆˆˆˆ()ˆˆˆˆ()ˆˆˆˆ()ˆˆˆˆ(221102222110112211022110解该(k+1)个方程组成的线性代数方程组,即可得到(k+1)个待估参数的估计值$,,,,,jj012。k⃟随机误差项的方差的无偏估计可以证明,随机误差项的方差的无偏估计量为:二、参数估计量的性质在满足基本假设的情况下,其结构参数的普通最小二乘估计具有:线性性、无偏性、有效性。-------也就是满足高斯-马尔柯夫定理三、样本容量问题所谓“最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。⒈最小样本容量样本最小容量必须不少于模型中解释变量的数目(包括常数项),即n≥k+12、满足基本要求的样本容量•从统计检验的角度:n-k≥8时,t分布较为稳定•一般经验认为:当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。•模型的良好性质只有在大样本下才能得到理论上的证明§3多元线性回归模型的统计检验一、拟合优度检验二、方程的显著性检验(F检验)三、变量的显著性检验(t检验)四、参数的置信区间一、拟合优度检验1、判定系数与调整的判定系数则2222)ˆ()ˆ)(ˆ(2)ˆ())ˆ()ˆ(()(YYYYYYYYYYYYYYTSSiiiiiiiiii总离差平方和的分解由于:)ˆ()ˆ)(ˆ(YYeYYYYiiiiikiikiiieYXeXeeˆˆˆ110=0所以有:ESSRSSYYYYTSSiii22)ˆ()ˆ(注意:一个有趣的现象222222ˆˆˆˆˆˆYYYYYYYYYYYYYYYYYYiiiiiiiiiiii判定系数TSSRSSTSSESSR12该统计量越接近于1,模型的拟合优度越高。问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大(Why?)这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。调整的判定系数(adjustedcoefficientofdetermination)在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响:)1/()1/(12nTSSknRSSR其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。二、方程的显著性检验(F检验)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。1、方程显著性的F检验即检验模型Yi=0+1X1i+2X2i++kXki+ii=1,2,,n中的参数j是否显著不为0。可提出如下原假设与备择假设:H0:0=1=2==k=0H1:j不全为0F检验的思想来自于总离差平方和的分解式:TSS=ESS+RSS由于回归平方和2ˆiyESS是解释变量X的联合体对被解释变量Y的线性作用的结果,考虑比值22ˆ/iieyRSSESS如果这个比值较大,则X的联合体对Y的解释程度高,可认为总体存在线性关系,反之总体上可能不存在线性关系。因此,可通过该比值的大小对总体线性关系进行推断。根据数理统计学中的知识,在原假设H0成立的条件下,统计量(注:这里的k是在回归元的个数而不是变量的个数,要注意k的具体含义))1/(/knRSSkESSF服从自由度为(k,n-k-1)的F分布。给定显著性水平,可得到临界值F(k,n-k-1),由样本求出统计量F的数值,通过FF(k,n-k-1)或F≤F(k,n-k-1)来拒绝或接受原假设H0,以判定原方程总体上的线性关系是否显著成立。对于中国居民人均消费支出的例子:一元模型:F=285.92二元模型:F=2057.3给定显著性水平=0.05,查分布表,得到临界值:一元例:F(1,21)=4.32二元例:F(2,19)=3.52显然有FF(k,n-k-1),即二个模型的线性关系在5%的显著性水平下显著成立。2、关于拟合优度检验与方程显著性检验关系的讨论由)1/()1/(12nTSSknRSSR)1/(/knRSSkESSF可推出:kFknnR1112与或)1/()1(/22knRkRF注:课本上是F与R2的关系,因为判定系数和校正的判定系数之间的关系,所以此三者的关系的推导是很显然的。三、变量的显著性检验(t检验)方程的总体线性关系显著每个解释变量对被解释变量的影响都是显著的。因此,必须对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。这一检验是由对变量的t检验完成的。1、t统计量),(~ˆ2iiiicN因此,可构造如下t统计量2、t检验设计原假设与备择假设:H1:i0给定显著性水平,可得到临界值t/2(n-k-1),由样本求出统计量t的数值,通过|t|t/2(n-k-1)或|t|≤t/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。H0:i=0(i=1,2…k)注意:一元线性回归中,t检验与F检验一致(不过多元的就没那么简单的关系了!)一方面,t检验与F检验都是对相同的原假设H0:1=0进行检验;另一方面,两个统计量之间有如下关系:四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。在变量的显著性检验中已经知道:容易推出:在(1-)的置信水平下i的置信区间是($,$)$$iitstsii22其中,t/2为显著性水平为、自由度为n-k-1的临界值。如何才能缩小置信区间?•增大样本容量n,因为在同样的样本容量下,n越大,t分布表中的临界值越小,同时,增大样本容量,还可使样本参数估计量的标准差减小;•提高模型的拟合优度,因为样本参数估计量的标准差与残差平方和呈正比,模型优度越高,残差平方和应越小。提高样本观测值的分散度,也就是说变量必须变化大。

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功