高等数学课件,积分学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高等数学课件,积分学第三讲积分学一、不定积分1)原函数与不定积分的概念2)不定积分计算方法:积分的基本公式及性质、分项积分法、两类换元法、分部积分法、几类特殊函数的积分法(有理函数、三角有理函数、简单无理函数)例1:计算。解:原式注:不定积分是导数的逆运算,要充分利用导数计算找原函数。例2:证明:若,则其中为待定系数,是方程不相等的实根,。证明:因为设(1)则有,当取时,(1)式恒成立,因此有二、定积分1)定积分的概念和性质2)微积分基本公式:,其中3)定积分计算方法:利用定义计算、利用微积分基本公式、分项积分法、换元法、分部积分法、一些间接计算公式。1、2、3、如果关于直线对称,则有4、如果关于点对称,则有5、6、7、例3:计算阿桑积分,其中。解:因为,所以是连续函数,即一定存在。(1)当时,(2)当时,。注:这里利用了复数开方公式得:4)反常积分(广义积分)反常函数审敛法:(1)设在区间上连续,且,如果函数是在区间上的有界函数,则收敛;(2)设在区间上连续,且,则有,收敛可得收敛;发散可得发散。(3)设在区间上连续,,则有如果,则有和同敛散;如果,则有收敛可得收敛;如果,则有发散可得发散。(4)如果收敛,则收敛(绝对收敛)。例4:判别下列反常积分敛散性(1)(2)解:(1)因为收敛,所以。(2)因为,发散,所以发散。5)定积分的应用:计算平面图形面积、计算立体体积、计算弧长、计算连续函数平均值公式。三、重积分(二重积分、三重积分)1)重积分的概念和性质2)重积分的计算方法:二重积分:直角坐标系下计算法、极坐标计算法、换元法注意对称性的运用;三重积分:投影法、切片法、球面坐标计算法、柱面坐标计算法、换元法注意对称性的运用。3)重积分的应用曲面的面积为、物体质心、转动惯量、引力。四、两类曲线积分1)曲线积分的概念和性质2)曲线积分的计算法:注意对称性的运用。3)格林公式:设在上有连续偏导数,则有4)第二型曲线积分与路径无关五、两类曲面积分1)两类曲面积分的概念和性质2)两类曲面积分计算法:注意曲面在对应坐标面的投影,及两类曲面的联系。3)高斯公式和斯托克斯公式例5:证明:若在区间上有连续二阶导数,则证明:因为在区间上连续,由最大值最小值定理,存在是在区间上的最大值。利用泰勒公式有其中在之间,,因此我们有又因为所以有由于因此我们有例6:证明:若函数在区间上单调,且存在,则有证明:无妨设单调递增,取则有因为存在,所以。当时有当时有由夹逼准则可得。例7:已知空间中的点,线段绕轴旋转为,求与平面所围成立体的体积。解:线段的方程为,曲面的方程为。例8:设函数在区域内有二阶连续偏导数,且,证明:证明:利用极坐标可得改变积分次序后可得设是圆并取正方向,是围成的圆盘,由关于坐标的基本计算方法和格林公式可得所以我们有例9:计算,其中是上半球面与柱面的交线,的方向从轴正方向向负方向看是逆时针方向。解:设上半球面在圆柱面内的部分,并区上侧,利用斯托克斯定理可得因为对应的单位法向量为,所以。例10:计算,其中为下半球面的上侧,为大于零的常数。解:取为圆盘的下侧,则有六、练习题1)计算2)设是上的连续函数,证明:3)设连续,且,其中为,求。4)设函数具有二阶连续的导数,且,试确定函数,使,其中是任意一条不与相交的简单正向闭曲线。5)计算,其中为曲面的外侧。七、

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功