第1页(共18页)外接球及内切球的体积表面积问题一.选择题(共23小题)1.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π2.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.3.点A、B、C、D在同一个球的球面上,AB=BC=AC=,若四面体ABCD体积的最大值为,则这个球的表面积为()A.B.8πC.D.4.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12πC.16πD.32π5.三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为()A.5πB.C.20πD.4π6.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于()A.4πB.πC.12πD.20π7.已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544πB.16πC.πD.64π8.设正方体的全面积为24,那么其内切球的体积是()A.B.C.D.9.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π10.三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()A.B.C.3πD.12π11.在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为()A.11πB.7πC.D.第2页(共18页)12.体积为的三棱锥S﹣ABC的所有顶点都在球O的球面上,已知△ABC是边长为1的正三角形,SC为球O的直径,则球O的表面积为()A.πB.2πC.4πD.6π13.在正三棱锥S﹣ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2,则正三棱锥S﹣ABC外接球表面积为()A.6πB.12πC.32πD.36π14.已知四面体P﹣ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=1,PB=AB=2,则球O的表面积为()A.7πB.8πC.9πD.10π15.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是()A.B.C.4πD.16.已知三棱锥V﹣ABC,VA⊥平面ABC,在三角形ABC中,∠BAC=120°,AB=AC=VA=2,三棱锥V﹣ABC的外接球的表面积为()A.16πB.C.D.20π17.一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为()A.B.9πC.4πD.π18.在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2.则四棱锥S﹣ABCD的外接球的表面积为()A.6πB.8πC.12πD.16π19.某几何体的三视图如图所示,则该几何体的外接球的表面积是()A.208πB.128πC.64πD.32π20.已知在三棱锥P﹣ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是()A.πB.3πC.D.2π第3页(共18页)21.如图是一个四面体的三视图,则其外接球的体积为()A.8B.C.4D.22.在棱锥P﹣ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的表面积为()A.100πB.50πC.25πD.23.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2二.填空题(共7小题)24.正四棱锥P﹣ABCD的五个顶点在同一球面上,若该正四棱锥的底面边长为4,侧棱长为,则这个球的表面积为.25.已知底面边长为,各侧面均为直角三角形的正三棱锥P﹣ABC的四个顶点都在同一球面上,则此球的表面积为.26.如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于.27.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为.28.若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.29.已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于.第4页(共18页)30.正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.第5页(共18页)外接球及内切球的体积表面积问题参考答案与试题解析一.选择题(共23小题)1.(2015•新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC=VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.2.(2014•陕西)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A.B.4πC.2πD.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.3.(2016•安徽校级一模)点A、B、C、D在同一个球的球面上,AB=BC=AC=,若四面体ABCD体积的最大值为,则这个球的表面积为()A.B.8πC.D.【解答】解:根据题意知,△ABC是一个等边三角形,其面积为,外接圆的半径为1.小圆的圆心为Q,若四面体ABCD的体积的最大值,由于底面积S△ABC不变,高最大时体积最大,第6页(共18页)所以,DQ与面ABC垂直时体积最大,最大值为S△ABC×DQ=,∴DQ=4,设球心为O,半径为R,则在直角△AQO中,OA2=AQ2+OQ2,即R2=12+(4﹣R)2,∴R=则这个球的表面积为:S=4π()2=故选C.4.(2016•衡水模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12πC.16πD.32π【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,R===2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.5.(2015•佳木斯一模)三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为()A.5πB.C.20πD.4π【解答】解:PA⊥平面ABC,AC⊥BC,∴BC⊥平面PAC,PB是三棱锥P﹣ABC的外接球直径;∵Rt△PBA中,AB=,PA=∴PB=,可得外接球半径R=PB=∴外接球的表面积S=4πR2=5π故选A.第7页(共18页)6.(2016•广西二模)已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于()A.4πB.πC.12πD.20π【解答】解:设球心为O,如图.由PA=PD=AB=2,∠APD=90°,可求得AD=2,在矩形ABCD中,可求得对角线BD==2,由于点P、A、B、C、D都在同一球面上,∴球的半径R=BD=则此球的表面积等于=4πR2=12π.故选:C.7.(2016•河南模拟)已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544πB.16πC.πD.64π【解答】解:三棱锥O﹣ABC,A、B、C三点均在球心O的表面上,且AB=BC=1,∠ABC=120°,AC=,∴S△ABC=×1×1×sin120°=,∵三棱锥O﹣ABC的体积为,△ABC的外接圆的圆心为G,第8页(共18页)∴OG⊥⊙G,外接圆的半径为:GA==1,∴S△ABC•OG=,即×OG=,OG=,球的半径为:=4.球的表面积:4π42=64π.故选:D8.(2015•内江模拟)设正方体的全面积为24,那么其内切球的体积是()A.B.C.D.【解答】解:正方体的全面积为24,所以,设正方体的棱长为:a,6a2=24a=2,正方体的内切球的直径就是正方体的棱长,所以球的半径为:1内切球的体积:故选B.9.(2016•白银模拟)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,∴R=2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.第9页(共18页)10.(2014•四川模拟)三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()A.B.C.3πD.12π【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R==.球的表面积为:4πR2=4=3π.故选:C.11.(2015•石家庄二模)在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为()A.11πB.7πC.D.【解答】解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,第10页(共18页)由于三角形OSA为等腰三角形,O是外接球的球心.则有该三棱锥的外接球的半径R==,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.12.(2015•防城港模拟)体积为的三棱锥S﹣ABC的所有顶点都在球O的球面上,已知△ABC是边长为1的正三角形,SC为球O的直径,则球O的表面积为()A.πB.2πC.4πD.6π【解答】解:根据题意作出图形:设球心为O,球的半径r.过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=2,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC=××2=,∴r=1.则球O的表面积为4π故选:C.13.(2016•洛阳二模)在正三棱锥S﹣ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2,则正三棱锥S﹣ABC外接球表面积为()A.6πB.12πC.32πD.36π【解