2012年山东省高考数学试卷(理科)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。满分150分。考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按以上要求作答的答案无效。4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。参考公式:锥体的体积公式:V=13Sh,其中S是锥体的底面积,h是锥体的高。如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B)。第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A3+5iB3-5iC-3+5iD-3-5i2已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4},则(CuA)B为A{1,2,4}B{2,3,4}C{0,2,4}D{0,2,3,4}3设a>0a≠1,则“函数f(x)=a3在R上是减函数”,是“函数g(x)=(2-a)3x在R上是增函数”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为(A)7(B)9(C)10(D)15(5)的约束条件2xy44x-y-1≤≥,则目标函数z=3x-y的取值范围是(A)(B)3,12(C)[-1,6](D)3-62,(6)执行下面的程序图,如果输入a=4,那么输出的n的值为(A)2(B)3(C)4(D)5(7)若42,,37sin2=8,则sin=(A)35(B)45(C)74(D)34(8)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2),当-1≤x<3时,f(x)=x。则f(1)+f(2)+f(3)+…+f(2012)=(A)335(B)338(C)1678(D)2012(9)函数的图像大致为(10)已知椭圆C:的离心学率为。双曲线x²-y²=1的渐近线与径有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆c的方程为(11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,延求这卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为(A)232(B)252(C)472(D)484(12)设函数f(x)=,g(x)=ax2+bx若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是A.当a0时,x1+x20,y1+y20B.当a0时,x1+x20,y1+y20C.当a0时,x1+x20,y1+y20D.当a0时,x1+x20,y1+y20第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。(13)若不等式的解集为,则实数k=__________。(14)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为____________。(15)设a>0.若曲线与直线x=a,y=0所围成封闭图形的面积为a,则a=______。(16)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动。当圆滚动到圆心位于(2,1)时,的坐标为______________。三、解答题:本大题共6小题,共74分。(17)(本小题满分12分)已知向量m=(sinx,1),函数f(x)=m·n的最大值为6.(Ⅰ)求A;(Ⅱ)将函数y=f(x)的图象像左平移12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g(x)的图象。求g(x)在上的值域。(18)(本小题满分12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求证:BD⊥平面AED;(Ⅱ)求二面角F-BD-C的余弦值。(19)(本小题满分12分)先在甲、乙两个靶。某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。该射手每次射击的结果相互独立。假设该射手完成以上三次射击。(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX(20)(本小题满分12分)在等差数列{an}中,a3+a4+a5=84,a5=73.(Ⅰ)求数列{an}的通项公式;(Ⅱ)对任意m∈N﹡,将数列{an}中落入区间(9n,92n)内的项的个数记为bm,求数列{bn}的前m项和Sn。(21)(本小题满分13分)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为34。(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为2,直线l:y=kx+14与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当12≤k≤2时,的最小值。22(本小题满分13分)已知函数f(x)=2lnxke(k为常数,c=2.71828……是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行。(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)'()fx,其中'()fx为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功