专题能力训练14

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Gothedistance1专题能力训练14空间中的平行与垂直能力突破训练1.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C12.(2015贵州八校第二次联考)如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O.则下列说法正确的是()A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心(第1题图)(第2题图)3.已知m,n是两条不同的直线,α,β是两个不同的平面,给出下列命题:①若α⊥β,m∥α,则m⊥β;②若m⊥α,n⊥β,且m⊥n,则α⊥β;③若m⊥β,m∥α,则α⊥β;④若m∥α,n∥β,且m∥n,则α∥β.其中正确命题的序号是()A.①④B.②③C.②④D.①③4.正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.5.下列命题中正确的是.(填上你认为正确的所有命题的序号)①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;③球O与棱长为a的正四面体各面都相切,则该球的表面积为π6a2;④在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则PC⊥AB.6.正三棱柱A1B1C1-ABC中,点D是BC的中点,BC=√2BB1.设B1D∩BC1=F.(1)求证:A1C∥平面AB1D;(2)求证:BC1⊥平面AB1D.Gothedistance27.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.8.(2015山东高考)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.9.Gothedistance3如图,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.10.如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)如果AB=2,AE=√2,OE⊥EC1,求AA1的长.思维提升训练11.如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=√2,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.Gothedistance412.如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将△ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.13.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=√3,点D为AC的中点,点E在线段AA1上.(1)当AE∶EA1=1∶2时,求证:DE⊥BC1;(2)是否存在点E,使三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的13?若存在,求AE的长,若不存在,请说明理由.14.如图,四边形ABCD中(如图①),E是BC的中点,DB=2,DC=1,BC=√5,AB=AD=√2.将△ABD(如图①)沿直线BD折起,使二面角A-BD-C为60°(如图②).(1)求证:AE⊥平面BDC;(2)求异面直线AB与CD所成角的余弦值;(3)求点B到平面ACD的距离.Gothedistance5参考答案能力突破训练1.D解析:易知A1C1⊥平面BB1D1D.∵B1O⊂平面BB1D1D,∴A1C1⊥B1O,故选D.2.A解析:如图,易知PA,PE,PF两两垂直,∴PA⊥平面PEF,从而PA⊥EF,而PO⊥平面AEF,则PO⊥EF,∴EF⊥平面PAO,∴EF⊥AO.同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.3.B解析:当α⊥β,m∥α时,有m⊥β,m∥β,m⊂β等多种可能情况,所以①不正确;当m⊥α,n⊥β,且m⊥n时,由面面垂直的判定定理知α⊥β,所以②正确;因为m⊥β,m∥α,所以α⊥β,③正确;若m∥α,n∥β,且m∥n,则α∥β或α,β相交,④不正确.故选B.4.√2+√6解析:如图,取CD的中点F,SC的中点G,连接EF,EG,FG.设EF交AC于点H,连接GH,易知AC⊥EF.又GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH.又GH∩EF=H,∴AC⊥平面EFG.故点P的轨迹是△EFG,其周长为√2+√6.5.②③④解析:①中也可以α与γ相交;②作平面与a,b,c都相交;③中可得球的半径为r=√612a;④中由PA⊥BC,PB⊥AC得点P在底面△ABC的射影为△ABC的垂心,故PC⊥AB.6.证明:(1)连接A1B,设A1B交AB1于点E,连接DE.Gothedistance6∵点D是BC的中点,点E是A1B的中点,∴DE∥A1C.∵A1C⊄平面AB1D,DE⊂平面AB1D,∴A1C∥平面AB1D.(2)∵△ABC是正三角形,点D是BC的中点,∴AD⊥BC.∵平面ABC⊥平面B1BCC1,平面ABC∩平面B1BCC1=BC,AD⊂平面ABC,∴AD⊥平面B1BCC1.∵BC1⊂平面B1BCC1,∴AD⊥BC1.∵点D是BC的中点,BC=√2BB1,∴BD=√22BB1.∵𝐵𝐷𝐵𝐵1=𝐶𝐶1𝐵𝐶=√22,∴Rt△B1BD∽Rt△BCC1,∴∠BDB1=∠BC1C.∴∠FBD+∠BDF=∠C1BC+∠BC1C=90°.∴BC1⊥B1D.∵B1D∩AD=D,∴BC1⊥平面AB1D.7.(1)证法一:取AD的中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD.又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC.又PC⊂平面POC,所以PC⊥AD.证法二:连接AC,依题意可知△PAD,△ACD均为正三角形.因为M为PC的中点,所以AM⊥PC,DM⊥PC.又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD.又AD⊂平面AMD,所以PC⊥AD.(2)证明:当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA.因为M为PC的中点,所以QM∥BC.在菱形ABCD中,AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(3)解:点D到平面PAM的距离即点D到平面PAC的距离.由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,即PO为三棱锥P-ACD的高.在Rt△POC中,PO=OC=√3,PC=√6,在△PAC中,PA=AC=2,PC=√6,边PC上的高AM=√𝑃𝐴2-𝑃𝑀2=√102,Gothedistance7所以△PAC的面积S△PAC=12PC·AM=12×√6×√102=√152.设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,得13S△PAC·h=13S△ACD·PO.因为S△ACD=√34×22=√3,所以13×√152×h=13×√3×√3,解得h=2√155,所以点D到平面PAM的距离为2√155.8.(1)证法一:连接DG,CD,设CD∩GF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)证明:连接HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.9.(1)证明:①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC=AC,平面β∩平面ABDC=BD,得AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥平面β.②当AB与CD异面时,设平面ACD∩平面β=DH,且DH=AC.Gothedistance8∵平面α∥平面β,平面α∩平面ACDH=AC,∴AC∥DH,∴四边形ACDH是平行四边形.在AH上取一点G,使AG∶GH=CF∶FD,得GF∥HD.∵AE∶EB=CF∶FD=AG∶GH,∴EG∥BH.又EG∩GF=G,∴平面EFG∥平面β.又EF⊂平面EFG,∴EF∥平面β.综上,EF∥平面β.(2)解:如图,连接AD,取AD的中点M,连接ME,MF.∵E,F分别为AB,CD的中点,∴ME∥BD,MF∥AC,且ME=12BD=3,MF=12AC=2,∴∠EMF为AC与BD所成的角(或其补角),∴∠EMF=60°或120°.在△EFM中,由余弦定理得EF=√𝑀𝐸2+𝑀𝐹2-2𝑀𝐸·𝑀𝐹·cos∠𝐸𝑀𝐹=√32+22±2×3×2×12=√13±6,即EF=√7或EF=√19.10.(1)证明:连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊂平面ABCD,所以AA1⊥BD.又AA1∩AC=A,所以BD⊥平面AA1C1C.再由EC1⊂平面AA1C1C知,BD⊥EC1.(2)解:设AA1的长为h,连接OC1.在Rt△OAE中,AE=√2,AO=√2,故OE2=(√2)2+(√2)2=4.在Rt△EA1C1中,A1E=h-√2,A1C1=2√2.故E𝐶12=(h-√2)2+(2√2)2.在Rt△OCC1中,OC=√2,CC1=h,O𝐶12=h2+(√2)2.因为OE⊥EC1,所以OE2+E𝐶12=O𝐶12,即4+(h-√2)2+(2√2)2=h2+(√2)2,Gothedistance9解得h=3√2.所以AA1的长为3√2.思维提升训练11.(1)证明:①因为C1B1∥A1D1,C1B1⊄平面ADD1A1,所以C1B1∥平面ADD1A1.因为平面B1C1EF∩平面ADD1A1=EF,所以C1B1∥EF.所以A1D1∥EF.②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,所以B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,即tan∠A1B1F=tan∠AA1B=√22,即∠A1B1F=∠AA1B.故BA1⊥B1F.又B1F∩B1C1=B1,所以BA1⊥平面B1C1EF.(2)解:设BA1与B1F的交点为H,连接C1H(如图).由(1)知BA1⊥平面B1C1EF,所以∠BC

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功