高一数学第一学期期中试卷4命题:郎建华一、选择题(每题3分,共33分)1、集合},04|{3NxxxxM,则M的子集个数为()A)2B)3C)4D)82如果集合},,1lg|{},,0)3)(1(|{RxxxQRxxxxP那么()A)QPB)QPC)QPD)RQP3、下列各组函数中,表示同一函数的是()2)xyxyA和111)2xyxxyB和xyxyClg2lg)2和100lg2lg)xyxyD和4、的值为10525.0532log2log)27125(()943)A2541)B2559)C57)D5、的值是,则、的两根是设loglog02lglg22xx()A)–4B)–2C)1D)36、已知函数)21()1(2)(2xxxxxf,若f(a)=3,则a的取值个数为()A)1B)2C)3D)47、函数)32(log22xxy,给定区间E,对任意的,,21Exx当21xx时,总有21yy,则下列区间可作为E的是()A)(-3,-1)B)(-1,0)C)(1,2)D)(3,6)8、如果命题“p或q”与命题“p”都是真命题,那么()A)命题p是真命题B)命题q是真命题C)命题q是假命题D)命题p与q同真同假9、已知三个互不相等的实数a,b,c满足:(1)若b不是最大,则a最小,(2)若c不是最小,则a最大,则这三个数的大小关系是()A)cbaB)abcC)acbD)bac10、已知函数,121)(xxxf且函数)1()(1xfyxgy与的图象关于直线xy对称,则)2(g的值等于()A)52B)54C)–1D)–211、已知两个命题,即;10,02nmp:有两个的方程:关于02nmxxxq小于1的正根,则p成立是q成立的()A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件二、填空题(每题3分,共18分)12、已知全集},32,3,2{2aaUAU,且A={|2a-1|,2},},5{ACU则a=______________;13、函数)8(log313)(2xxfx的定义域是__________________;14、函数2222xxxy的值域是_________________;15、函数)1lg()(2aaxxxf在区间),2[上单调递增,则a的取值范围是____________;16、已知定义在上R的二次函数),()(2Rcbcbxxxg的值域为),9[,且)()2()(xfxxg,则__;__________)2(f17、命题“对任意的实数x,不等式02nmxx成立,则042nm”的否命题是_________________________________________________________。三、解答题(共6题,共49分)≠18、已知R为全集,}125|{},2|1||{xxBxxA,求BACR)(。(7分)19、证明函数xxxf11lg)(在其定义域上是减函数。(7分)20、已知函数.,2||)1()(Rxxxxxf(1)作出这个函数的图象;(2)).()1](,1[)(agaaxf上的最小值在求(8分)21、已知命题p:)10(23aaayx且是R上的减函数;命题q:函数)23lg(2xaxy的值域为R.。若为假,且为真,或qpqp求实数a的取值范围。(8分)22、某商店将进货每个10元的商品按每个18元出售时,每天可卖出60个。商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个。为获取每日最大利润,此商店的售价应为每个多少元?(9分)上是非接近的。在区间与上是接近的,否则,称在区间与则称均有的上都有意义,若对任意在区间与、函数],[)()(],[)()(,1|)()(|],[,],[)()(2321nmxgxfnmxgxfxgxfnmxxnmxgxf现给出两个函数和一个区间如下:)10](3,2[;log)(),3(log)(121aaaaxfaxxfaxaa且;(1)的范围。上都有意义,求在与设aaaxfxf]3,2[)()(21(2)上是否是接近的。在与讨论]3,2[)()(21aaxfxf(10分)