3.3支路法1、概述若电路有b条支路,n个节点求各支路的电压、电流。共2b个未知数各支路的伏安关系方程数b总共方程数2b可列方程数KCL:n-1KVL:b-(n-1)支路法示例:电路有6条支路。欲求解各支路电流Ii、电压Umn。R1R2I2I1US1R6R5R4R3I3I4I5IS3US41234-I1-I2+I5=0I1-I3+I4=0I2+I3–I6=0U21+U14–U24=0-U31–U43–U14=0U24+U43+U32=01、独立节点KCL2、网孔KVL:I6支路法示例R1R2I2I1US1R6R5R4R3I3I4I5IS3US41234U21=R1I1-US1U31=R2I2U32=R3(I3-IS3)U24=R4I4+US4U14=R5I5U43=R6I6I63、支路伏安关系共12个方程方程的求解-I1-I2+I5=0I1-I3+I4=0I2+I3–I6=0U21+U14–U24=0-U31–U43–U14=0U24+U43+U32=02、网孔KVL:1、独立节点KCLU21=R1I1-US1U31=R2I2U32=R3(I3-IS3)U24=R4I4+US4U14=R5I5U43=R6I63、支路伏安关系方程的求解-I1-I2+I5=0I1-I3+I4=0I2+I3–I6=0U21+U14–U24=0-U31–U43–U14=0U24+U43+U32=02、网孔KVL:1、独立节点KCLU21=R1I1-US1U31=R2I2U32=R3(I3-IS3)U24=R4I4+US4U14=R5I5U43=R6I63、支路伏安关系代入•1)先消元电压Umn。41445511SSUUIRIRIR0556622IRIRIR334336644SSURUIRIRIR-I1-I2+I5=0I1-I3+I4=0I2+I3–I6=0方程的求解U21=R1I1-US1U31=R2I2U32=R3(I3-IS3)U24=R4I4+US4U14=R5I5U43=R6I63、支路伏安关系再求各支路电压•2)先消元电流Ii。-I1-I2+I5=0I1-I3+I4=0I2+I3–I6=0U21=R1I1-US1U31=R2I2U32=R3(I3-IS3)U24=R4I4+US4U14=R5I5U43=R6I6支路伏安关系I1=G1U21+G1US1I2=G2U31I3=G3U32+IS3I4=G4U24-G4US4I5=G5U14I6=G6U43代入•1)先消元电流Ii。11145312211SUGUGUGUG44311244323211SSSUGIUGUGUGUG3436323312SIUGUGUGU21+U14–U24=0-U31–U43–U14=0U24+U43+U32=02、网孔KVL:•1)先消元电流Ii。11145312211SUGUGUGUG44311244323211SSSUGIUGUGUGUG3436323312SIUGUGUGU21+U14–U24=0-U31–U43–U14=0U24+U43+U32=0•再求电流IiI1=G1U21+G1US1I2=G2U31I3=G3U32+IS3I4=G4U24-G4US4I5=G5U14I6=G6U43支路电流法示例:电路有6条支路。欲求解各支路电流Ii、电压Umn。R1R2I2I1US1R6R5R4R3I3I4I5IS3US41234I6支路电流法第1步:电流源等效变换为电压源。R1R2I2I1US1R6R5R4R3I3I4I5R3IS3US41234I6+-第2步:列回路KVL式41445511SSUUIRIRIR0556622IRIRIR334336644SSURUIRIRIR第3步:与KCL式联立第3步:与KCL式联立41445511SSUUIRIRIR0556622IRIRIR334336644SSURUIRIRIR-I1-I2+I5=0I1-I3+I4=0I2+I3–I6=0第4步:解方程例3.3(P47)支路电压法第1步:电压源等效变换为电流源。G1G2I2I1G1US1G6G5G4G3I3I4I5IS3G4US41234I6第2步:列独立节点KCL式支路电压法第1步:电压源等效变换为电流源。G1G2I2I1G1US1G6G5G4G3I3I4I5IS3G4US41234I6第2步:列独立节点KCL式11145312211SUGUGUGUG44311244323211SSSUGIUGUGUGUG3436323312SIUGUGUG•第3步:与KVL式联立。11145312211SUGUGUGUG44311244323211SSSUGIUGUGUGUG3436323312SIUGUGUGU21+U14–U24=0-U31–U43–U14=0U24+U43+U32=02、网孔KVL:第4步:解方程例3.4(P49)