量子力学发展史

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

量子力學發展史近代科學發展之三物理模型粒子模型•Allowedustoignoreunnecessarydetailsofanobjectwhenstudyingitsbehavior系統與剛體•Extensionofparticlemodel波動模型兩種新模型•量子粒子•邊界條件下的量子粒子黑體幅射物體在任何溫度下皆會發出熱幅射(電磁幅射)電磁幅射波長會隨物體表面溫度的變化而改變黑體為一理想系統會吸收所有射入的幅射由黑體發射出的電磁幅射稱為幅射黑體近似黑體模型可近似為開了一小孔洞的金屬空腔離開空腔的電磁幅射其性質將只與空腔的表面溫度有關黑體實驗結論幅射的總功率與溫度的關係滿足Stefan定律•Stefan’sLaw•P=sAeT4•Forablackbody,e=1sistheStefan-Boltzmannconstants=5.670x10-8W/m2.K4波長分佈曲線的峰值位置隨溫度升高兒而往短波長方向偏移,Wien位移定律•Wien’sdisplacementlawlmaxT=2.898x10-3m.K黑體幅射強度隨波長的分佈l幅射強度隨溫度升高而增強l總幅射量隨溫度升高而變大•Theareaunderthecurve峰值對應的波長隨溫度升高而變短紫外危機古典物理的預測與實驗在短波處的結果發生極大的差異此現象稱為紫外危機,尤其古典物理預測當幅射波的波長趨近於零時更會得到無限大的能量,此與實驗觀察完全相反MaxPlanck(拯救紫外危機的英雄)1858–1947Heintroducedtheconceptof“quantumofaction”In1918hewasawardedtheNobelPrizeforthediscoveryofthequantizednatureofenergyPlanck’sTheoryofBlackbodyRadiationIn1900,PlanckdevelopedastructuralmodelforblackbodyradiationthatleadstoanequationinagreementwiththeexperimentalresultsHeassumedthecavityradiationcamefromatomicoscillationsinthecavitywallsPlanckmadetwoassumptionsaboutthenatureoftheoscillatorsinthecavitywallsPlanck’sTheoryofBlackbodyRadiationIn1900,PlanckdevelopedastructuralmodelforblackbodyradiationthatleadstoanequationinagreementwiththeexperimentalresultsHeassumedthecavityradiationcamefromatomicoscillationsinthecavitywallsPlanckmadetwoassumptionsaboutthenatureoftheoscillatorsinthecavitywallsPlanck’sAssumption,1TheenergyofanoscillatorcanhaveonlycertaindiscretevaluesEn•En=nhƒ•nisapositiveintegercalledthequantumnumber•hisPlanck’sconstant•ƒisthefrequencyofoscillation•Thissaystheenergyisquantized•EachdiscreteenergyvaluecorrespondstoadifferentquantumstatePlanck’sAssumption,2TheoscillatorsemitorabsorbenergyonlyindiscreteunitsTheydothiswhenmakingatransitionfromonequantumstatetoanother•Theentireenergydifferencebetweentheinitialandfinalstatesinthetransitionisemittedorabsorbedasasinglequantumofradiation•AnoscillatoremitsorabsorbsenergyonlywhenitchangesquantumstatesEnergy-LevelDiagramAnenergy-leveldiagramshowsthequantizedenergylevelsandallowedtransitionsEnergyisontheverticalaxisHorizontallinesrepresenttheallowedenergylevelsThedouble-headedarrowsindicateallowedtransitionsCorrespondencePrinciple(對應原理)當量子系統的量子態總數變大時,量子現象應當會連續地轉變成古典現象•Quantumeffectsarenotseenonaneverydaybasissincetheenergychangeistoosmallafractionofthetotalenergy•QuantumeffectsareimportantandbecomemeasurableonlyonthesubmicroscopiclevelofatomsandmoleculesPhotoelectricEffectThephotoelectriceffectoccurswhenlightincidentoncertainmetallicsurfacescauseselectronstobeemittedfromthosesurfaces•TheemittedelectronsarecalledphotoelectronsTheeffectwasfirstdiscoveredbyHertzPhotoelectricEffectApparatusWhenthetubeiskeptinthedark,theammeterreadszeroWhenplateEisilluminatedbylighthavinganappropriatewavelength,acurrentisdetectedbytheammeterThecurrentarisesfromphotoelectronsemittedfromthenegativeplate(E)andcollectedatthepositiveplate(C)PhotoelectricEffect,ResultsAtlargevaluesofDV,thecurrentreachesamaximumvalue•AlltheelectronsemittedatEarecollectedatCThemaximumcurrentincreasesastheintensityoftheincidentlightincreasesWhenDVisnegative,thecurrentdropsWhenDVisequaltoormorenegativethanDVs,thecurrentiszeroPhotoelectricEffectFeature1Dependenceofphotoelectronkineticenergyonlightintensity•ClassicalPrediction•Electronsshouldabsorbenergycontinuallyfromtheelectromagneticwaves•Asthelightintensityincidentonthemetalisincreased,theelectronsshouldbeejectedwithmorekineticenergy•ExperimentalResult•Themaximumkineticenergyisindependentoflightintensity•ThecurrentgoestozeroatthesamenegativevoltageforallintensitycurvesPhotoelectricEffectFeature2Timeintervalbetweenincidenceoflightandejectionofphotoelectrons•ClassicalPrediction•Forveryweaklight,ameasurabletimeintervalshouldpassbetweentheinstantthelightisturnedonandthetimeanelectronisejectedfromthemetal•Thistimeintervalisrequiredfortheelectrontoabsorbtheincidentradiationbeforeitacquiresenoughenergytoescapefromthemetal•ExperimentalResult•Electronsareemittedalmostinstantaneously,evenatverylowlightintensities•Lessthan10-9sPhotoelectricEffectFeature3Dependenceofejectionofelectronsonlightfrequency•ClassicalPrediction•Electronsshouldbeejectedatanyfrequencyaslongasthelightintensityishighenough•ExperimentalResult•Noelectronsareemittediftheincidentlightfallsbelowsomecutofffrequency,ƒc•Thecutofffrequencyischaracteristicofthematerialbeingilluminated•NoelectronsareejectedbelowthecutofffrequencyregardlessofintensityPhotoelectricEffectFeature4Dependenceofphotoelectronkineticenergyonlightfrequency•ClassicalPrediction•Thereshouldbenorelationshipbetweenthefrequencyofthelightandtheelectrickineticenergy•Thekineticenergyshouldberelatedtotheintensityofthelight•ExperimentalResult•ThemaximumkineticenergyofthephotoelectronsincreaseswithincreasinglightfrequencyPhotoelectricEffectFeatures,SummaryTheexperimentalresultscontradictallfourclassicalpredictionsEinsteinextendedPlanck’sconceptofquantizationtoelectromagneticwavesAllelectromagneticradiationcanbeconsideredastreamofquanta,nowcalledphotonsAphotonofi

1 / 100
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功