基于人工神经网络的数字音频水印研究(IJEME-V2-N1-4)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

I.J.EducationandManagementEngineering2012,1,23-28PublishedOnlineJanuary2012inMECS()DOI:10.5815/ijeme.2012.01.04Availableonlineat:digitalaudiowatermarking;artificialneuralnetworks;discretecosinetransform©2012PublishedbyMECSPublisher.Selectionand/orpeerreviewunderresponsibilityoftheInternationalConferenceonE-BusinessSystemandEducationTechnology1.IntroductionWiththerapiddevelopofcomputernetworkandmultimediainformationprocessingtechnology,itismoreeasilytocopydigitalproductillegally,thusintellectualpropertyprotectionfordigitalproductsisrequiredmoreurgently.Digitalwatermarkingtechnologyprovidesamethodofcopyrightprotectionforitssecurity,robustnessandimperceptibility.Digitalaudiowatermarkingtechnologyusesthefeaturesofhumanauditorysystemtoembedthesecretinformationintotheaudiofilesandachievesthepurposeofcopyrightprotectionfordigitalaudioproducts.Accordingtothedifferentwaysofembeddingthewatermarkintotheaudiofiles,currentdigitalaudiowatermarkingtechnologiescanbedividedintotimedomainalgorithmsandtransformdomainalgorithms.Theformerdirectlyembedsthewatermarkinformationintotheselectedtimedomainofaudiosignal,suchastheleastsignificantbitalgorithm[1],thephasecodingalgorithm[2],andtheechohidingmethod[3];thelatterperformssomekindoftransformationontheaudiosignal,andthenembedsthewatermarkintothetransformedcoefficients.Finallyitrecoversthewatermarkedaudiosignalthroughthecorrespondinginversetransform.TransformationalgorithmsaremainlythediscreteFouriertransform(DFT),thediscretecosinetransform(DCT),thediscretewavelettransform(DWT).Ingeneralspeaking,thetransformdomainalgorithmhasmoretransparency,security,andcapacityinembeddingwatermarkintoaudiosignal.Boththetimedomainalgorithmsandthetransformdomainalgorithmsachievethepurposeofembeddingwatermarkinformationintoaudiosignalbymodifyingtheoriginalaudiosignal.AlthoughitmakesfulluseofthecharacteristicsofhumanauditoryCorrespondingauthor:E-mailaddress:tlzlb@sina.com24DigitalAudioWatermarkingBasedonArtificialNeuralNetworksmodelsystems,theperceptionqualityofaudiosignalischangedtoacertainextent.Thispapermakesfulluseofthelearningandadaptivecapabilitiesofartificialneuralnetworksandusestheimportantcharactersofaudiosignalastheinputvectorofartificialneuralnetworks.Therelationshipbetweenaudiosignalandwatermarkinformationisestablishedthroughthelearningofartificialneuralnetworks,whichachievesembeddingwatermarkintotheoriginalaudiosignalwithoutmodifyingtheaudiodata.Thismethoddoesnotchangetheperceptionqualityofaudiosignalandimprovetheimperceptibilityofwatermark.Inaddition,thisproposedwatermarkingmethoddoesnotrequiretheoriginalaudiosignalforwatermarkingextraction.2.BackpropagationalgorithmofartificialneuralnetworksBackpropagation(BP)algorithmofartificialneuralnetwork[4]belongstoδalgorithm,whichisasupervisedmachinelearningalgorithm.ThemainideaofBPalgorithmistopropagatetheoutputlayererrorfrombacktofrontandindirectlycalculatethehiddenlayererror.BPalgorithmisdividedintotwophases.Inthefirstphase,thevalueofeachunitofoutputlayerisobtainedbycalculatingtheinputvectorfrominputlayertooutputlayer.Inthesecondstage(backpropagation),usingthevectorofoutputlayer,theerrorofeachhiddenlayeriscalculatedwhichisusedtomodifytheconnectionweightsofneuralnetwork.BPalgorithmusuallyusesgradientmethodtomodifytheweightsofneuralnetworkthatminimizethesumofsquarederrors.Inaddition,backpropagationalgorithmoftenusesSigmoidfunctionasoutputfunction.Fig.1showstheconventionalsymbolsinbackpropagationalgorithm.Forthecalculatingunitj,thesubscriptiisonbehalfofcalculatingunitiofitsformerlayerandthesubscriptkisonbehalfofcalculatingunitkofitslaterlayer.TheOjrepresentstheoutputvalueofcurrentlayerandtheWijrepresentstheweightfromtheformerlayertocurrentlayer.Whensampledataisinputtedtotheneuralnetwork,eachcalculatingunitfrominputlayertooutputlayerperformsthefollowingcalculation:Figure1.theconventionalsymbolsinback-propagationalgorithmiiijjOWnet(1))(jjnetfo(2)Fortheoutputlayer,thejyˆ(jjoyˆ)istheactualoutputvalueandthejyistheidealoutputvalue.TheoutputerrorEisasfollow:2j)ˆy(21jjyE(3)Inordertosimplifytheformula,thegradientisdefinedasfollow:jjnetE(4)kiWijWjOO····DigitalAudioWatermarkingBasedonArtificialNeuralNetworks25ConsideringtheimpactofweightsWij

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功