基于神经网络的车牌自动识别系统(IJEM-V7-N4-3)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

I.J.EngineeringandManufacturing,2017,4,26-35PublishedOnlineJuly2017inMECS()DOI:10.5815/ijem.2017.04.03Availableonlineat:AutomaticSystem,NeuralNetworks,Recognition,oflicenseplates.©2017PublishedbyMECSPublisher.Selectionand/orpeerreviewunderresponsibilityoftheResearchAssociationofModernEducationandComputerScience.1.IntroductionTheproblemofthetrafficcontroloftheintersectionsrequirestheunderstandingof,butalsoandsomewaytocheckthedecisionsandtheassessmentofitseffectiveness.Testingofthereal,intersectionswillbesodiffi-cultespeciallywhenthedesignermustconstantlymakechangesinitsdevelopmentanduseofoutputdataforanalysisandotherpurposes.Anotherwayofmodelingisnotrequired,thedesignerflexibilitytotestitsdesignandtheresultsofthemucheasierandfaster.Oneofthesewaysusingstolenvehiclessearch[1].Constantlygrowinguseofvideosurveillancetechnology,troopsimultaneouslyandmultipleremotefromtheoperatorobjects.SpecialplaceamongsuchtechnologiesareintelligentvideosurveillanceIntelligentSurveil-lanceSystems,capableinautomaticmodetodetectthesituationandtheachievementoftheaimsofmonitor-ing.Suchsystemsdemand,primarilybecausetheorderstoreducetheuseofhumanresourcesastheoperatordo*Correspondingauthor.Tel.:E-mailaddress:khalidalsmadi79@gmail.com,Takialddina@yahoo.comAutomaticSystemRecognitionofLicensePlatesusingNeuralNetworks27notneedtobeacontinuousviewdatafrommultiplecamerastoconfirmthatthesystemspecialsituations.“Subcategoryintelligentvideosurveillancesystemsarethesystemofautomaticlockingviolationsoftherulesoftheroad,capabletoidentifyviolationssuchasexcessivecollisionsdisplaysthespeedoftheplannedforthesolidorstoptheline,traveltoredlight.Inthisarticleisthejournalistsstudywithaviewtotheestablishmentofthedetectionunitvehiclestocorrectthefailureofthebenefitsofplannedunregulatedtransition[2].Identifyingsuchviolationsrequiressimultaneoustrajectorytrackingofpedestriansandvehiclesthatit'sharderthanlockingsystemcitedabove,itwasdecidedtostartbyexaminingtheapplicabilityofalgorithmsbasedonbackgroundsubtractionandfollow-uptofiltertheareasofprocessingandobjectrecognitioninimag-esisoneofthemostdifficulttasksinthefieldofinformationtechnology.Duetotheimportanceofthisissue,researchfacilityofrecognition,imageandspeechanalysisareincludedinthelistofprioritydirectionsofsci-ence,technologyanddevelopmentofFederalcriticaltechnologies.Theproposedsystemacquiresacarimagewithadigitalcamera.Snapshotimprovedbyremovingnoiseprocessingstagebyapplyingthemedianfilter.Contrastenhancementiscarriedoutonthefilteredimagetoreducevariouslightingeffectday.Alsoimprovedthetextandbackgroundcontrastregistrationnumber.Edgedetectorappliedonthetestimage,maximumamountandrejectingedgesfoundbyusingtheproposedmethod,whichgivesthelocationoftheplateatthelaststageoftheproposedgrowingwindowalgorithmisusedtoremovethefalsenumberplateareas.Aftermarkingplatesareaisdonefortheconvenienceoftheuse[3,4,5].2.RelatedWorksTheWorkwillbeheldModernmethodsofcharacterrecognitioninimagesareusedforawiderangeofscopeofworksuchastextrecognitionInfrastructureofImplementationThisworkhasbeensurfacesofvariouswork;CorrespondingblockdiagramoftotalStepsofthealgorithminthispartareshowninFig.1.thefollowingsteps:-Startand-Localization-CharacterandNumbersSegmentation-FeatureExtractionofSegmentedImage-RecognizetheExtractedFeatures-ShowtheLicensePlate-EndFig.1.CharacterSegmentationforExtractionofNumberPlates28AutomaticSystemRecognitionofLicensePlatesusingNeuralNetworksCurrently,thesetechnologiesareimplementedinthreetraditionalmethods,theyare:structural,featureandtemplatemethods.Eachofthesemethodsisfocusedonitsconditionsofusewhichitiseffectivefor.However,allthesemethodshavedisadvantages.Whenimagerecordingthegreatesttransformations,affectingtherecog-nitionresult,aremadebytheaffineandProjectivetransformationsoccurringduetochangeintheimagingan-glechangeofscaleandweatherconditions.Also,thepresenceofforeignobjectsinimageswithcomplexbackgroundsignificantlyreducethereliabilityoftherecognitionmethodsusedinmodernsystemsofca

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功