资阳市2005—2006学年度高中三年级第一次质量检测理科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共150分,考试时间为120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束时,将本试卷和答题卡一并收回.一、选择题:本大题共12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目的要求的.1.设集合1,2,3,4,5,1,2,3,2()UUABACB,则集合等于().A{1,2,3,4,5}B{1,3}C{1,2,3}D{4,5}2.复数2133ii等于().A.1344iB.1344iC.1322iD.1322i3.不等式52314xx的解集为().A.(-∞,-3)∪(2,∞)B.(-3,2)C.(-2,0)D.(0,2)4.已知数列22nn的前n项和为nS,则limnnS的值是().A.0B.1C.2D.35.若函数()fx满足条件:当x4时,f(x+1)=f(x);当x≥4时,f(x)=(12)x.则根据条件可以求得2log3f的值是().A.238B.111C.119D.1246.如果,0xyRxyxyxy,那么“”是“”的().A充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要的条件7.已知sin3cos5,2sin5cos则tanα的值为().A.2811B.–2C.2D.2298.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各一台,则不同的取法共有()种.A.140B.84C.70D.359.已知Sn是等差数列{an}的前n项和,且a2+a4+a7+a15=40,则S13的值为().A.20B.65C.130D.26010.若函数3cos,44yfxx在内单调递减,则f(x)可以是().A.1B.cosxC.sinxD.-sinx11.定义在实数集R上的函数fx的最小正周期为T,若当0,xT时,函数y=fx有反函数y=1,fxxD,则当2,3xTT时,函数y=fx的反函数是().A.y=1,fxxDB.y=12,fxTxDC.y=12,fxTxDD.y=12,fxTxD12.若O是平面上的定点,A、B、C是平面上不共线的三点,且满足OPOCCBCA(R),则P点的轨迹一定过△ABC的().A.重心B.内心C.外心D.垂心资阳市2005—2006学年度高中三年级第一次质量检测理科数学第Ⅱ卷(非选择题共90分)题号二三总分总分人171819202122得分注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4个小题,每小题4分,共16分.把答案直接填在题目中的横线上.13.已知321nxx的展开式的第二项和第三项的系数比为2:11,则展开式中的有理项共有项.14.若关于x的不等式342xaxxxb为的解集,则实数a的值是.15.若函数22lg111yaxax的定义域为R,则实数a的取值范围是.16.设,,abc是任意..的平面向量,给出下列的命题:①()0abccab;②22aa;③222abab;④0abab;⑤22323294ababab.其中是真命题的有(写出所有正确命题的序号).三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数f(x)=x2+ax+a(a∈R).(Ⅰ)解不等式:f(x)-x;(Ⅱ)若3hxxbfx函数在x=1处的切线方程是y=2x+3,求a、b的值.18.(本小题满分12分)甲、乙、丙各进行一次射击,如果甲、乙2人各自击中目标的概率为0.8,3人都击中目标的概率是0.384,计算:(Ⅰ)丙击中目标的概率;(Ⅱ)至少有2人击中目标的概率;(Ⅲ)其中恰有一人击中目标的概率.19.(本小题满分12分)在∆ABC中,已知三个内角A、B、C的对边是a、b、c,其中c=10,且cos4.cos3AbBa(Ⅰ)判断∆ABC形状;(Ⅱ)若∆ABC的外接圆圆心为O,点P位于劣弧AC上,∠PAB=60°,求四边形ABCP的面积.20.(本小题满分12分)已知k0Rk且,向量cos,sinm与cos,sinn之间满足关系kmn2mkn.(Ⅰ)用k表示mn;(Ⅱ)求mn的范围;(Ⅲ)若f(k)=mn+6ak在区间(0,2]上是减函数,求正实数a的取值范围.21.(本小题满分13分)设f(x)是定义在实数集R上的奇函数,且2,10,fxfxx当时f(x)=3x,(Ⅰ)求证:直线x=1是函数y=f(x)的对称轴;(Ⅱ)当1,5x时,求fx的解析式;(Ⅲ)若A=,xfxaxRA且,求a的取值范围.22.(本小题满分13分)已知函数ln20,1fxxax=-+在上是增函数.(Ⅰ)求实数a的取值范围;(Ⅱ)若数列1110,1ln2),nnnnnnaacaaaaa+满足=且=(-证明:;(Ⅲ)若数列nb满足10,1bd=且12ln2)nnnbbb+=(-,试判断数列nb是否单调,并证明你的结论.资阳市2005-2006学年度高中三年级第一次质量检测理科数学试题参考答案及评分意见一.选择题:每小题5分,共12个小题,满分60分.1-5.BBACD;6-10.ABCCD;11-12.DA.二.填空题:每小题4分,共4个小题,满分16分.13.3;14.81;15.5(,1](,)3;16.②⑤.三.解答题:17.(Ⅰ)由题意x2+(a+1)x+a>0,即(x+a)(x+1)>0.故·····································2分当a<1时,由-a>-1,知x<-1或x>-a;当a=1时,由-a=-1,知x≠-1;当a>1时,由-a<-1,知x<-a或x>-1.5分综上,当a<1时,原不等式的解集为{x|x>-a或x<-1};当a=1时,原不等式的解集为{x|xR且x≠-1};当a>1时,原不等式的解集为{x|x<-a或x>-1}.······························6分(Ⅱ)∵函数h(x)=x3+bf(x)在x=1处的切线方程是y=2x+3,∴(1)5,'(1)2,hh即125,322,babbab························································10分解得3,22.ab∴a=-23,b=-2.······················································12分18.设甲、乙、丙各进行一次射击,击中目标的事件分别为A、B、C,则A、B、C三事件是相互独立的.·····························································································1分由题意有:P(A)=0.8,P(B)=0.8,甲、乙、丙三人都击中目标的事件是A·B·C,且P(A·B·C)=0.384.··································································································2分(Ⅰ)∵P(A·B·C)=P(A)P(B)P(C)=0.384,P(A)=0.8,P(B)=0.8,∴P(C)=0.6.····················································································5分(Ⅱ)设甲、乙、丙三人中至少有两人击中目标的事件为D,则D可分为甲、乙击中,丙未击中,甲、丙击中,乙没有击中和甲没有击中,乙丙击中,以及三人都击中,这三个事件又是互斥的.∴P(D)=P(A·B·C)+P(A·B·C)+P(A·B·C)+P(A·B·C)=0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.384=0.832.·············································································9分(Ⅲ)设恰有一人击中目标的事件为E,则P(E)=P(A·B·C)+P(A·C·B)+P(A·C·B)=0.2×0.2×0.6+0.8×0.2×0.4×2=0.152.···················································································12分答:(Ⅰ)丙击中目标的概率是0.6;(Ⅱ)至少有2人击中目标的概率是0.832;(Ⅲ)其中恰有一人击中目标的概率是0.152.19.(Ⅰ)∵coscosAB=ab=34,∴a≠b,A≠B.由正弦定理可得,coscosAB=ABsinsin,∴cosA·sinA=cosB·sinB,∴sin2A=sin2B.··············································································4分∵A≠B,A、B是△ABC的内角,∴2A+2B=π,∴A+B=2,C=2,∴△ABC是直角三角形.·····································································6分(Ⅱ)由(Ⅰ)可得AC=8,BC=6,又∵∠PAB=60°,连接PB,则∠APB=90°,∴AP=12AB=5.∵∠PAB=60°,sin∠CAB=53,cos∠CAB=54,∴sin∠PAC=sin(60°-∠CAB)=23·54-21·53=10334.···························10分∴S四边形APCB=S△APC+S△ABC=21·AP·PC·sin∠PAC+21AC·BC=143358210+21×8×6=38-6+24=38+18.···························12分20.(Ⅰ)由已知有,|m|=1,|n|=1,而kmn2mkn,∴k2+1+2km·n=2(1+k2-2km·n),∴6km·n=1+k2,∴m·n=kk612.··················································4分(Ⅱ)由(Ⅰ)知,m·n=kk612=61(k1+k),故当k>0时,m·n≥31;当k<0时,m·n≤-31.又∵-1=-|m·n|≤m·n≤|m|·|n|=1,∴m·n的取值范围是[-1,-31][31,1].············································8分(Ⅲ)由f(k)=kak612,得f(k)=61-261ka,要使f(k)=mn+6ak在区间(0,2]上是减函数,则在0,2上,f(k)0恒成立.································