数学试题(理科)答案一、选择题答题卡:题号123456789101112答案CDABACBDBADC二、填空题答题卡:13.2214.acb15.1,216.23三、解答题:(共6小题,74分,解答题应写出文字说明,证明过程及演算步骤)17、解:(1)设(,)(cos,sin)cxyc(2)1213abac1sincoscossin21sincoscossin31sin()25sincos121cossin12原式2sincos1112sin()cossin218、解:(1)当1n时,1853a当2n时,2112122285nnnnaaaan21212285(1)nnaaan当2n,125nna即152nna故13(1)5(2)2nnnan(2)0(2,)sin1(41,)21(43,)nkkNnnkkNnkkN123456nbbbbbbb246855553()()222212lim()nnbbb=2523411()419、解:(1)222cos2acbBac(2)原式=00sin7013tan502223tanacBacb=000sin50sin7013cos502223/22acbac=0000cos503sin50sin70cos50=312cosB=00002cos(5060)sin70cos5031cos2cosBB=000sin70cos702cos5032B=1在锐角ABC中3B20、解:在甲图中:连结OM,设(0,)2MOAS矩=200sin2当(0,)42时S矩/max=2200cm在乙图中,同理连结MO,设(0,)3MOA则由OMC可知:00sin120sin120OCOMOMsin0sinsin120OMMC=40sin3同理040sin(60)3OC又在OCD中,CD=0340sin(60)OC'S矩01600sinsin603CDMC1600313sincossin322080013cos(260)32当00030(0,60)时S’矩/max240033cm故乙方案裁法能得到最大面积矩形,最大值为240033cm21、解:①3()fxxax2'()3fxxa由'()0fx,即23ax但23ax对1,x不可能恒成立'()0fx对1,x不可能恒成立()yfx在1,不能单调递减,只能单增又由'()0fx,得23ax,对1,x恒成立,3a又0a0,3a()fx在1,单增且0,3a而5()25gxaa当且仅当5aa,即50,3a时,()/25gamm证②:设0()fxu,则0()fux3220000030()(1)0xaxuxuxxuuauaux01,1xu,且03a220010xxuua00xu,即0xu故00()fxx注:①可用定义法②可用反证法22、证(I):x、yR有()()()fxyfxfy取0,0yx则()()(0)fxfxf0x时()1fx(0)1f又设0,0xyx则1(0)()()ffxfx1()()fxfx而当0x时,()1fx当0x时0()1fx(II):①1:(0)1naaf由11()(2)nnfafa得1()(2)1(0)nnfafaf1(2)(0)nnfaaf可证()yfx是R的递减函数,证明如下:设1x、2xR且12xx则21(0),()(0,1)xxtyft2111()()()()()fxfxtfxftfx即21()()fxfx()fx是k120nnaa即12nnaa21nan②设12111(1)(1)(1)()21naaagnn,得1231()(1)21(1)nnnagngnna23222()820631(1)820164gnnngnnnn22()1(1)gngn即()(1)gngn()gn对nN单增而12111(1)(1)(1)21naaakn即()kgn对nN恒成立2(1)3kg即233k