高一物理万有引力与航天测试题姓名一、选择题(每小题中至少有一个答案是符合题意的)1.下列说法正确的是()A.行星绕太阳的椭圆轨道可近似地看作圆轨道,其向心力来源于太阳对行星的引力B.太阳对行星引力大于行星对太阳引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.太阳与行星间的引力、行星与卫星间的引力、地面上物体所受重力,这些力的性质和规律都相同2.关于万有引力的说法正确的是()A.万有引力只有在天体与天体之间才能明显地表现出来B.一个苹果由于其质量很小,所以它受到的万有引力几乎可以忽略C.地球对人造卫星的万有引力远大于卫星对地球的万有引力D.地球表面的大气层是因为万有引力约束而存在于地球表面附近3.一星球密度和地球密度相同,它的表面重力加速度是地球表面重力加速度的2倍,则该星球质量是地球质量的(忽略地球、星球的自转)()A.2倍B.4倍C.8倍D.16倍4.若已知某行星绕太阳公转的半径为r,公转周期为T,万有引力常量为G,则由此可求出()A.某行星的质量B.太阳的质量C.某行星的密度D.太阳的密度5.宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是()A.3年B.9年C.27年D.81年6.近地卫星线速度为7.9km/s,已知月球质量是地球质量的1/81,地球半径是月球半径的3.8倍,则在月球上发射“近月卫星”的环绕速度约为()A.1.0km/sB.1.7km/sC.2.0km/sD.1.5km/s7.由于空气微弱阻力的作用,人造卫星缓慢地靠近地球,则()A.卫星运动速率减小B.卫星运动速率增大C.卫星运行周期变小D.卫星的向心加速度变大8.同步卫星离地球球心的距离为r,运行速率为v1,加速度大小为a1,地球赤道上的物体随地球自转的向心加速度大小为a2,第一宇宙速度为v2,地球半径为R。则()A.a1:a2=r:RB.a1:a2=R2:r2C.v1:v2=R2:r2D.r:Rv:v21二、填空题9.某物体在地球表面上受到地球对它的引力大小为960N,为使此物体受到的引力减至60N,物体距地面的高度应为_____R。(R为地球的半径)10.一物体在一星球表面时受到的吸引力为在地球表面所受吸引力的n倍,该星球半径是地球半径的m倍。若该星球和地球的质量分布都是均匀的,则该星球的密度是地球密度的_________倍。11.两颗人造地球卫星,它们的质量之比2121::mm,它们的轨道半径之比3121::RR,那么它们所受的向心力之比21FF:__________;它们的角速度之比21:____________.12.若已知某行星的平均密度为,引力常量为G,那么在该行星表面附近运动的人造卫星的角速度大小为____________.三、解答题13.对某行星的一颗卫星进行观测,已知运行的轨迹是半径为r的圆周,周期为T,求:(1)该行星的质量;(2)测得行星的半径为卫星轨道半径的1/10,则此行星表面重力加速度为多大?14.在地球某处海平面上测得物体自由下落高度h所需的时间为t,到某高山顶测得物体自由落体下落相同高度所需时间增加了t,已知地球半径为R,求山的高度。15.一颗在赤道上空运行的人造卫星,其轨道半径r=2R0(R0为地球半径),卫星的运转方向与地球的自转方向相同,设地球自转的角速度为ω0,若某时刻卫星通过赤道上某建筑物的正上方,求它再次通过该建筑物上方所需时间。16.2005年10月12日,“神舟”六号飞船成功发射,13日16时33分左右,费俊龙在船舱里做“翻筋斗”的游戏。有报道说,“传说孙悟空一个筋斗十万八千里,而费俊龙在3min里翻了4个筋斗,一个筋斗351km”据此报道求出“神舟”六号在太空预定轨道上运行时,距地面的高度与地球半径之比。(已知地球半径为6400km,g取10m/s2,结果保留两位有效数字)17.两颗卫星在同一轨道平面沿同方向绕地球做匀速圆周运动,地球半径为R,a卫星离地面的高度等于R,b卫星离地面的高度为3R,则:(1)a、b两卫星的周期之比Ta:Tb是多少?(2)若某时刻两卫星正好同时通过地面同一点的正上方,则a至少经过多少个周期两卫星相距最远?18.1789年英国著名物理学家卡文迪许首先估算出了地球的平均密度.根据你学过的知识,你能否知道地球密度的大小.6、万有引力与航天参考答案一、不定项选择题题号12345678答案ADDCBCBBCDAD二、填空题9.310.mn11.29:,127:12.34G三、解答题13.解:(1)由万有引力提供向心力,有rTmrGMm2224解得,2324GTrM(2)对放在该行星表面的质量为m物体,有2RmGMgm,因rR101,故22400Trg14.解:在海平面,由自由落体运动规律,有221gth,2RGMmmg,在某高山顶,由自由落体运动规律,有221)(ttgh,2)(hRGMmgm,由以上各式可以得出,TtRh15.002/(/8)gR(点拨:对卫星,万有引力提供向心力2020(2)(2)MmGmRR得到2308GMR即220308gRR所以08gR①设经过时间t它再次通过建筑物上方,则(ω-ω0)t=2π②由①②联立解得002/8tgR)16.smtsv/108.760310351433,由hRvmhRMmG22)(得RvGMh2,又gRGM2,RvgRh22,03.012vRgRh.622()610NsFmgt17.(1)(2)两卫星相距最远时有:18.设地球质量为M,地球半径为R,地球表面的重力加速度为g,忽略地球自转的影响,根据万有引力定律得:2RGMg将地球看成均匀球体:334RV得地球的平均密度GRgVM43上式中π、G、R和g均为常数,将它们的值代入可得:ρ=5.5×103kg/m3即地球的平均密度为ρ=5.5×103kg/m3