高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作已知数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数若有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题则可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最佳解题方案.一、例题分析例1.已知F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比较α,β的大小.分析:一般情况下,F(x)可以看成两个幂函数的差.已知函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在(1,+∞)上,或是在(0,1)上,或是在(0,1)内的常数,于是F(x)成为两个同底数指数函数之差,由于指数函数y=at(0α1)是减函数,又因为xα-xβ0,所以得αβ.例2.已知0a1,试比较的大小.分析:为比较aα与(aα)α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比较底数a与aα的大小,由于指数函数y=ax(0a1)为减函数,且1a,所以a<aα,从而aα(aα)α.比较aα与(aα)α的大小,也可以将它们看成底数相同(都是aα)的两个幂,于是可以利用指数函数是减函数,由于1a,得到aα(aα)α.由于a<aα,函数y=ax(0a1)是减函数,因此aα(aα)α.综上,.解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为ax=3,但要注意0x3且x≠1.现将ax看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图(1),过(3,3)点的指数函数的底,现要求0x3时,ax=3,所以,又因为x≠1,在图(1)中,过(1,3)点的指数函数的底a=3,所以.若将ax=3变形为,令,现研究指数函数a=3t,由0x1且x≠1,得,如图(2),很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,已知当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,f(x)的解析式是().(A)f(x)=x+4(B)f(x)=2-x(C)f(x)=3-|x+1|(D)f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2f(-1)=f(3)=3,∴只有(A)、(C)可能正确.又∵f(0)=f(2)=2,∴(A)错,(C)对,选(C).解法二、依题意,在区间[2,3]上,函数的图象是线段AB,∵函数周期是2,∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF.∵函数是偶函数,∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+10,所以y=3-|x+1|,x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4,∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1],且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴,于是在[–2,0]上,.由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+10,根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.本题应抓住“偶函数”“周期性”这两个概念的实质去解决问题.例5.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是().(A)(0,1)(B)(1,2)(C)(0,2)(D)[2,+∞]分析:设t=2-ax,则y=logat,因此,已知函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以(C)是错误的.又a=2时,真数为2–2x,于是x≠1,这和已知矛盾,所以(D)是错的.当0a1时,t=2-ax是减函数,而y=logat也是减函数,故y=loga(2-ax)是x的增函数,所以(A)是错的.于是应选(B).解法二、设t=2-ax,y=logat由于a0,所以t=2-ax是x的减函数,因此,只有当a1,y=logat是增函数时,y=loga(2-ax)在[0,1]上才是减函数;又x=1时,y=loga(2-a),依题意,此时,函数有定义,故2–a0综上可知:1a2,故应选(B).例6.已知,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,则g(5)=_____________-解法一、由去分母,得,解出x,得,故,于是,设,去分母得,,解出x,得,∴的反函数.∴.解法二、由,则,∴,∴.即的反函数为,根据已知:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面”的另一侧的“象”f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,体现了数形结合的优势出二、巩固练习(1)已知函数在区间上的最大值为1,求实数a的值.(1)解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得,,,而顶点横坐标,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1,,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由,解得,当,此时,顶点不在区间内,应舍去.综上,.(2)函数的定义域是[a,b],值域也是[a,b],求a.b的值.2)解:y=f(x)的图象如图,分三种情况讨论.当ab≤0时,f(x)为递增函数,有,解得,,由于b0,应舍去.当0≤ab时,f(x)为递减函数,有,解得:a=1,b=2.当a0b时,f(x)最大值在顶点处取得,故,,所以最小值应在a处取得.(2)解:y=f(x)的图象如图,分三种情况讨论.当ab≤0时,f(x)为递增函数,有,解得,,由于b0,应舍去.当0≤ab时,f(x)为递减函数,有,解得:a=1,b=2.当a0b时,f(x)最大值在顶点处取得,故,,所以最小值应在a处取得.,解得:,综上,或(3)求函数的最小值.解(3)分析:由于对数的底已明确是2,所以只须求的最小值.(3)解法一:∵,∴x2.设,则,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵,∴x2设,则=∴μ≥8且,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.(4)已知a0,a≠1,试求方程有解时k的取值范围.4)解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为,代入①式,.解法二:原方程,原方程有解,应方程组,即两曲线有交点,那么ak-a或0aka(a0)∴k-1或0k1.(5)设函数(Ⅰ)解不等式f(x)≤1(Ⅱ)求a的取值范围,使f(x)在[0,+∞]上是单调函数.5)解(Ⅰ),不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a0,∴原不等式即∴当0a1时,所给不等式解集为,当a≥1时,所给不等式解集为{x|x≥0}.(Ⅱ)在区间[0,+∞)上任取x1,x2,使得x1x2,(ⅰ)当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.(ⅱ)当0a1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.