高考数学直线方程训练1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

直线方程一.教学内容:直线方程二.重点、难点:1.直线方程:点斜式:)(00xxkyy斜截式:bkxy两点式:)(112121xxxxyyyy截距式:1byax一般式:0CByAx参数式:sincos00tyytxxt为参数2.111:bxkyl222:bxkyl2121//kkll21bb1212kkll夹角为:|1|tan1212kkkk【典型例题】[例1]直线01)1()23(yaxa不过第二象限,求a的取值范围。解:(1)0)23(a0)1(a01023aa1a(2)01a1a51x成立(3)023a32a135y不成立∴1a[例2]已知直线l在x轴的截距比在y轴上的截距大1,且过定点)2,6(P,求l的方程。解:设)6(2:xkyl0xky620y62kx1)62(62kk02762kk0)12)(23(kk321k212k∴022:yxl0632yx[例3]直线l倾斜角为53arcsin,若它与两坐标轴围成三角形的面积为6,求l的方程。解:)2,0(53arcsin53sin43tan∴bxyl43:byx0bxy3403|34|||216bbbS∴01243yx[例4]010)3()2(:1yaxal05)12(6:2yaxl(1)21//ll求a;(2)21ll求a解:(1)12362aaa1862322aaa020322aa25a或4a(2)0)12)(3()2(6aaa091122aa1a或29a[例5]已知三条直线:02yx,03kyx,04ykx交于一点,求k解:显然1k,111320302kykkxkyxyx代入0411132kkkk05722kk∴25k[例6]02:yxl,)1,0(A,)0,2(B,)1,4(C(1)在l上求一点P,使||||PCPB最小;(2)在l上求一点Q,使||||||QBQA最大。解:(1)B关于l的对称),(yxB)58,56(122020222Bxyyx)5576,5538(02038263:PyxyxlCB(2))58,56(B)54,52(02022:QyxyxlBA[例7]过点)1,1(P与直线0743:1yxl,06512:2yxl的夹角相等的直线。解:|5121512||43143|kkkk|125125||3434|kkkk2222|481615||151648|kkkk0)3333)(633263(22kkk0)79)(97(kk791k972k∴)1(79)1(xy)1(97)1(xy∴0279yx01697yx[例8]过点)4,2(M作两条互相垂直线分别交yx,轴正半轴于A、B。若四边形的面积被AB平分,求直线AB。解:设1:byaxlAB)0,0(ba∴)0,(aA,),0(bB0)4)(4()2)(2(baMBMA即ba2100:abaybxlAB),0(),(ABdABMd2222|42|baabbaabab(1)4221042babaababab或255ba(2)32031021042babaababab(舍)∴052:yxlAB或042yx[例9])6,0(B,)2,0(C,A在x轴负半轴上,问A在何处CAB有最大值?解:设)0,(aA)0(a∴akAB6akAC221241tanaakkkkCABACABACAB331224)(124aaaa1232a时,CAB最大6[例10])5,4(A,B在x轴上,C在直线022yx上,求ABC的周长的最小值。解:A关于l的对称点为)7,0(P,A关于x轴的对称点为)5,4(QABC周长最小值为104PQ,此时)0,37(B,)4,1(C[例11]已知ABC,)1,1(A,)3,2(B,)4,1(C,求A。解:32ABk25ACk41935132251tanACABABACkkkkA419arctanA[例12]正ABC中,)1,1(A,中心)3,5(M,求三边所在直线。解:设AM交BC于DM分AD比2∴)4,7(D21ADk∴2BCk∴0182:yxlBCACABkk,与AD夹角为30|21121|30tankk11358k∴ACABl,)1(113581xy[例13]ABC中)1,9(A,)4,3(B,内心)1,4(I,求C。解:AIl,1y,21ABk∴21ACk072:yxlAC3BIk0133:yxlBIA关于BIl的对称点为)2,0(A022:yxlBC41022072yxyxyx∴)4,1(C[例14]ABC中)4,1(A,两条中线0223yx,01253yx,求BCl。解:A不在中线上,232012530223yxyxyx重心)2,32(GBC边中比为AD∴G分AD之比2)5,23(21242212132Dyx设),(baB∴)10,3(baC∴74012)10(5)3(30223bababa∴01954:yxlBC【模拟试题】(答题时间:40分钟)1.过)2,6(P横纵截距相等的直线l的方程。2.将直线013:yxl绕它上面一点)3,1(沿逆时针方向旋转150的l,求l的方程。3.过点)1,1(A作直线l与已知直线02yx,033yx分别交于M、N,点A恰为MN中点,求l的方程。4.直线l过点)2,3(P与两点A、B等距,已知)2,1(A,)4,7(B,求l的方程。5.一直线过点)1,1(A,它被平行直线012:yxl,032:2yxl所截的线段中点在01:3yxl上,求l。6.正方形中心)3,6(P,一边所在直线方程为:07125yx,求其余三边所在直线方程。【试题答案】1.解:(1)过)0,0(062yx(2)不过)0,0()6(2xy04yx2.解:l的倾斜角为153215tan)1)(32()3(xy0)13(2)32(yx3.解:设),(baM,)2,2(baN2103)2(3202bababa032:yxl4.解:43ABkAB中点)1,3(∴)3(432:1xyl0143yx:2l3x5.解:323501:032:32yxyxlyxl0101:012:31yxyxlyxl中点)31,34(∴0572yx6.解:不妨设正方形ABCD07125:yxlAB1),(ABlPd设0125:myxlCD1),(CDPd19m∴019125:yxlCD设ADl、BCl为:0512nyx1),(BClPd113|1572|n100n或74n∴ADl、BCl为:0100512yx、074512yx

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功