08高考理科数学解析几何题型与方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题五:高考理科数学解析几何题型与方法(理科)一、考点回顾1.直线(1).直线的倾斜角和斜率直线的斜率是一个非常重要的概念,斜率k反映了直线相对于x轴的倾斜程度.当斜率k存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a(a∈R).因此,利用直线的点斜式或斜截式方程解题时,斜率k存在与否,要分别考虑.(2).直线的方程a.点斜式:)(11xxkyy;b.截距式:bkxy;c.两点式:121121xxxxyyyy;d.截距式:1byax;e.一般式:0CByAx,其中A、B不同时为0.(3).两直线的位置关系两条直线1l,2l有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.设直线1l:y=1kx+1b,直线2l:y=2kx+2b,则1l∥2l的充要条件是1k=2k,且1b2b;1l⊥2l的充要条件是1k2k=-1.(4).简单的线性规划.a.线性规划问题涉及如下概念:①存在一定的限制条件,这些约束条件如果由x、y的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.②都有一个目标要求,就是要求依赖于x、y的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x、y的一次解析式,就称为线性目标函数.③求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题.④满足线性约束条件的解(x,y)叫做可行解.⑤所有可行解组成的集合,叫做可行域.⑥使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解.b.线性规划问题有以下基本定理:①一个线性规划问题,若有可行解,则可行域一定是一个凸多边形.②凸多边形的顶点个数是有限的.③对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到.C.线性规划问题一般用图解法.2.圆(1).圆的定义:平面内到定点等于定长的点的集合(或轨迹)。(2).圆的方程a.圆的标准方程222)()(rbyax(r>0),称为圆的标准方程,其圆心坐标为(a,b),半径为r.特别地,当圆心在原点(0,0),半径为r时,圆的方程为222ryx.b.圆的一般方程022FEyDxyx(FED422>0)称为圆的一般方程,其圆心坐标为(2D,2E),半径为FEDr42122.当FED422=0时,方程表示一个点(2D,2E);当FED422<0时,方程不表示任何图形.c.圆的参数方程圆的普通方程与参数方程之间有如下关系:222ryxcossinxryr(θ为参数)222)()(rbyaxcossinxarybr(θ为参数)(3).直线与圆3.圆锥曲线(1).椭圆a.定义定义1:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M与一个定点的距离和它到一条定直线的距离的比是常数=<<时,这个点的轨迹是椭圆.e(0e1)cab.图形和标准方程图-的标准方程为:+=>>图-的标准方程为:+=>>811(ab0)821(ab0)xaybxbya22222222c.几何性质条件{M|MF1|+|MF2|=2a,2a>|F1F2|}{M||MF|Ml=|MF|Ml=e0e1}1122点到的距离点到的距离,<<标准方程xaybab222210()>>xbyaab222210()>>顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴对称轴:x轴,y轴.长轴长|A1A2|=2a,短轴长|B1B2|=2b焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c(c>0),c2=a2-b2离心率e(0e1)=<<ca准线方程ll12xx:=;:=acac22ll12yy:=;:=acac22焦点半径|MF1|=a+ex0,|MF2|=a-ex0|MF1|=a+ey0,|MF2|=a-ey0点和椭圆的关系>外在椭圆上<内xaybxy022022001(,)(k为切线斜率),ykx=±akb222(k为切线斜率),ykx=±bka222切线方程xxayyb0202+=1(x0,y0)为切点xxbyya0202+=1(x0,y0)为切点切点弦方 程(x0,y0)在椭圆外xxayyb0202+=1(x0,y0)在椭圆外xxbyya0202+=1弦长公式|xx|1+k|yy|1+1k212122-或-其中(x1,y1),(x2,y2)为割弦端点坐标,k为割弦所在直线的斜率d.常用结论①过椭圆22221xyab的焦点的弦AB长的最大值为2a,(长轴);最小值为22ba(过焦点垂直长轴的弦)②设椭圆22221xyab的两焦点分别为F1,F2,P为椭圆任意一点,当∠F1PF2最大时,P为短轴端点;③椭圆上的点到焦点的最短距离为a-c;椭圆上的点到焦点的最长距离为a+c(2)双曲线a.定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).b.图形和标准方程图8-3的标准方程为:xayb2222-=>,>1(a0b0)图8-4的标准方程为:yaxb2222-=>,>1(a0b0)c.几何性质条件P={M|MF1|-|MF2|=2a,a>0,2a<|F1F2|}.P{M||MF|Ml|MF|Mlee1}1122=点到的距离=点到的距离=,>.标准方程xayb2222-=>,>1(a0b0)yaxb2222-=>,>1(a0b0)顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴对称轴:x轴,y轴,实轴长|A1A2|=2a,虚轴长|B1B2|=2b焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c(c>0),c2=a2+b2离心率e(e1)=>ca准线方程ll12xx:=-;:=acac22ll12yy:=-;:=acac22渐近线方程yx(0)=±或-=baxayb2222yx(0)=±或-=abyaxb2222共渐近线的双曲线系方程xayb2222-=≠k(k0)yaxb2222-=≠k(k0)焦点半径|MF1|=ex0+a,|MF2|=ex0-a|MF1|=ey0+a,|MF2|=ey0-aykx=±akb222(k为切线斜率)kk>或<-babaykx=±bka222(k为切线斜率)kk>或<-ababxxayyb0202-=1((x0,y0)为切点yyaxxb0202-=1((x0,y0)为切点切线方程xyaa((xy)2200=的切线方程:=,为切点xyyx002切点弦方程(x0,y0)在双曲线外xxayyb0202-=1(x0,y0)在双曲线外yyaxxb0202-=1弦长公式|xx|1+k|yy|1+1k212122-或-其中(x1,y1),(x2,y2)为割弦端点坐标,k为割弦所在直线的斜率d.常用结论①过双曲线22221xyab的焦点的弦AB长的最小值为2a(A,B分别在两支上),最小值为22ba(A,B在同一支上且过焦点垂直实轴的弦)②双曲线的2222(0)xyab的渐近线方程为22220xyab③双曲线上的点到焦点的最短距离为c-a(3).抛物线a.定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.b.抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②p的几何意义:焦点F到准线l的距离.③弦长公式:设直线为=+抛物线为=,=ykxby2px|AB|212k|xx||yy|2121-=-112k焦点弦长公式:|AB|=p+x1+x2c.常用结论①过抛物线y2=2px的焦点F的弦AB长的最小值为2p②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是直线AB恒过定点(2p,0)(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的a.直线与圆:一般用点到直线的距离跟圆的半径相比b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离c.直线与双曲线、抛物线有自己的特殊性(2).a.求弦所在的直线方程b.根据其它条件求圆锥曲线方程(3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所在的直线方程(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称)5.二次曲线在高考中的应用二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。(2).重视二次曲线的标准方程和几何性质与导数的有机联系。(3).重视二次曲线性质与数列的有机结合。(4).重视解析几何与立体几何的有机结合。6.知识网络曲线与方程直线直线的倾斜角和斜率点斜式两点式一般式直线方程的基本形式在线外——点到直线的距离在线上点和直线的位置关系相交两条直线的位置关系平行重合交点夹角简单的线性规划二元一次不等式表示平面区域线性规划线性规划的实际应用垂直圆圆的定义圆的方程标准式一般式参数式外切、相交、内切、内含应用两立方程的解式位置关系直线与圆的位置关系相交相切——圆的切线相等交点弦长位置关系判定方法:圆心到直线的距离d与半径R的比较二、经典例题剖析(根据近几年高考命题知识点及热点做相应的试题剖析,要求例题不得少于8个)考点一曲线(轨迹)方程的求法常见的求轨迹方程的方法:(1)单动点的轨迹问题——直接法(五步曲)+待定系数法(定义法);(2)双动点的轨迹问题——代入法;(3)多动点的轨迹问题——参数法+交轨法。1.(哈九中)设)0(1),(),,(22222211babxxyyxByxA是椭圆上的两点,满足0),(),(2211aybxaybx,椭圆的离心率,23e短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.解析:本例(1)通过32e,22b,及,,abc之间的关系可得椭圆的方程;(2)从方程入手,通过直线方程与椭圆方程组成方程组并结合韦达定理;(3)要注意特殊与一般的关系,分直线的斜率存在与不存在讨论。圆锥曲线——椭圆、曲线、直线—定义—标准方程性质:对称性、焦点、顶点、离率、准线、焦半径等直线与圆锥曲线的位置关系答案:(1)22322

1 / 43
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功