2002-2003学年度上学期高中学生学科素质训练高三数学测试题—不等式(6)一、选择题(本题每小题5分,共60分)1.函数)1arcsin(||)1lg()(xxxxxf的定义域是()A.]2,1(B.(-1,0)C.]2,0(D.[0,2]2.已知0ab1,则下列不等式成立的是()A.babaB.baabC.baaaD.bbab3.下列不等式中与不等式023xx同解的是()A.0)2)(3(xxB.)10(1)2)(3(aaxxC.0323xxD.)1(0)2(logaxa4.函数xxarcctgy312的值域是x则],,43[的取值范围是()A.]0,51[B.)51,21(C.)0,21(D.),0()51,(5.已知33116,]11[,1,xQxpxRx,则P与Q的大小关系是()A.PQB.P=QC.PQD.与x值有关6.若yxyx则,4loglog22的最小值是()A.8B.24C.2D.47.若aa则132log的取值范围是()A.320aB.a32C.132aD.3201aa或8.有一等差数列{an}和一等比数列{bn},它们的首项是一相等的正数,且等2n+1项亦相等,则下列判断中最准确的是()A.11nnbaB.11nnbaC.11nnbaD.11nnba9.设AaaxaxxxBxxxA若},|{},)1(25|{2,则()A.a=1,3B.31aa或C.31aD.31a10.方程)1,0(00||aaayxyxa和有且仅有两组公共解,则a的取值范围是()A.),1(B.(0,1)C.),1()1,0(D.11.函数1822xbxaxy的最大值是9,最小值是1,则a,b的值是()A.5,5B.2,2C.5,2D.2,512.若233,310xxyx则函数的最大值为()A.721B.7298C.2434D.2165二、填空题(本题每小题4分,共16分)13.若函数12)(aaxxf的值在11x时,有正有负,则a的取值范围是.14.若a,b0,且满足babaab则,1的最小值是.15.不等式xx1||2的解集是.16.正方形的四个顶点分别是(2,2)、(-2,2)、(-2,-2)、(2,-2),P点在正方形内,且P点到各边的距离的平方和为20,并与直线323:yxl的距离最短,则P点坐标是.三、解答题17.(本题满分12分)已知a、b为正常数,且满足xa+yb=1,试求正数x,y的和x+y何时取得最小值,并求出这个最小值.18.(本题满分12分)解不等式.)2(log)2(log3xxxx19.(本题满分12分)已知正数列{an}满足.)2(1,2:),(21nanNnaaannnn时当求证20.(本题满分12分)在四面体A—BCD中,AB=BC=CD=DA=a,AC=BD.当AC、BD变化时,求该四面体体积的最大值.21.(本题满分12分)设.111212121:,,,baaccbcbaRcba求证22.(本题满分14分)设Ra,讨论方程axx)1(log22在什么情况下有解,有解时求出它的解.高三数学测试题参考答案六、不等式一、选择题1.C2.A3.D4.A5.A6.D7.D8.A略解:{an}的公差为d,{bn}的公比为q,a1=a=b1,a2n+1=a1+2nd,b2n+1=aq2n,又a+2nd=a·q2n,),1(22nqand.122)1(2)1(2122212nnnnnnbqaqaqaqaaa9.C10.A提示:在同一坐标系内作出y=a|x|和y=x+a(a0,a≠1)的图象易知11.A12.C二、填空题13.依题意有则令略解,12,012,0.311axaaxyaa.311,1121aa14..14)(,2:.2222baabbaabba略解.222,04)(4)(2bababa15.}.21|{xx16.).22,26(略解:设323,2),,(22yxPyxyxP到则的距离是|323|21yx.令.|)32()3sin(22|21.2,0,sin2,cos2dyx则当.22,266cos2,6,23.,1)3sin(yxd有最小值时三、计算题17.解:,)()()()(22baybyxaxybxayxyx当.2,,::abbayxyabaxybyxax有最小值时即18.解:令.3,03,31,2logyyyyyx不等式即①当时且301yy,不等式总成立,此时;13y②当,01y两边平方得,3)1(2yy此时有,12log3,12xy由有,10;2,2,1log2loglog33xxxxxxxxxx若则为若32xx则为,,2031x原不等式的解集是}2,20|{31xxx或19.证明:).1(,,011nnnnnnnaaaaaaa①当,41)]1(21[)1(,1211112aaaaan时;)221()41(222a②假设).1(21)1(,)21(,12kkkkkakaaakakn则成立有时21111)31(.2121kaakakaakkkkkk解得.成立,综上即证.20.解:设E、F分别为BD、AC之中点,AC=BD=2x,依题设不难得到AE⊥BD,CE⊥BD,AE=EC.从而BD⊥平面AEC,且EF为△AEC边AC上的高,222222222,xaAFAEEFxaBEABAE.2323131222xaxBDEFACBDSVAEC令,27)]2(31[)2(,26322222222222axaxxxaxxuxaxxu则.333au∴当且仅当322,)33(33,2222BDACaxaxxax也即时舍去即a时,四面体有最大体积32732a21.证明:caaccbcbbabababa22121,22121,22121,4)11)((同理.111212121accbbacba22.解:由.1,01,1,)1(log2222xxxxaxx由此可得又则当.021,21)1(log,12222xxxxaxxxaa变为时ax21,可见要使它有解,必须a0,此时,).0(22,)2(122aaxxxaaa解得