非线性规划的MATLAB解法及其应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1题目非线性规划的MATLAB解法及其应用(一)问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划是20世纪50年代才开始形成的一门新兴学科。70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。对于静态的最优化问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。本实验就是用matlab软件来解决非线性规划问题。(二)基本要求掌握非线性规划的MATLAB解法,并且解决相关的实际问题。题一:对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二:某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大.所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x1,x2)表示总利润;p1,q1,x1分别表示甲的价格、成本、销量;p2,q2,x2分别表示乙的价格、成本、销量;aij,bi,λi,ci(i,j=1,2)是待定系数.题三:设有400万元资金,要求4年内使用完,若在一年内使用资金x万元,则可得效益x万元(效益不能再使用),当年不用的资金可存入银行,年利率为10%.试制定出资金的使用计划,以使4年效益之和为最大.(三)数据结构题一:设剪去的正方形的边长为x,则水槽的容积为:xx)23(2;建立无约束优化模型为:miny=-xx)23(2,0x1.5题二:总利润为:z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20,r2=100,λ2=0.02,c2=30,则2问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1=(b1-a11x1)x1+(b2-a22x2)x2的极值.显然其解为x1=b1/2a11=50,x2=b2/2a22=70,我们把它作为原问题的初始值.题三:设变量ix表示第i年所使用的资金数,则有4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max43213212114321ixxxxxxxxxxxtsxxxxzi(四)源程序题一:编写M文件fun0.m:functionf=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:functionf=fun(x)y1=((100-x(1)-0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1);y2=((280-0.2*x(1)-2*x(2))-(100*exp(-0.02*x(2))+30))*x(2);f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun’,x0),z=fun(x)题三:建立M文件fun44.m,定义目标函数:functionf=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M文件mycon1.m定义非线性约束:function[g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;3g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五)运行结果题一:运算结果为:xmax=0.5000,fmax=2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025,62.4977,z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六)相关知识用Matlab解无约束优化问题一元函数无约束优化问题21),(minxxxxf常用格式如下:(1)x=fminbnd(fun,x1,x2)(2)x=fminbnd(fun,x1,x2,options)(3)[x,fval]=fminbnd(...)(4)[x,fval,exitflag]=fminbnd(...)(5)[x,fval,exitflag,output]=fminbnd(...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。多元函数无约束优化问题标准型为:minF(X)命令格式为:(1)x=fminunc(fun,X0);或x=fminsearch(fun,X0)(2)x=fminunc(fun,X0,options);或x=fminsearch(fun,X0,options)(3)[x,fval]=fminunc(...);或[x,fval]=fminsearch(...)(4)[x,fval,exitflag]=fminunc(...);或[x,fval,exitflag]=fminsearch(5)[x,fval,exitflag,output]=fminunc(...);4或[x,fval,exitflag,output]=fminsearch(...)说明:fminsearch是用单纯形法寻优.fminunc的算法见以下几点说明:(1)fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制:LargeScale=’on’(默认值),使用大型算法LargeScale=’off’(默认值),使用中型算法(2)fminunc为中型优化算法的搜索方向提供了4种算法,由options中的参数HessUpdate控制:HessUpdate=’bfgs’(默认值),拟牛顿法的BFGS公式;HessUpdate=’dfp’,拟牛顿法的DFP公式;HessUpdate=’steepdesc’,最速下降法(3)fminunc为中型优化算法的步长一维搜索提供了两种算法,由options中参数LineSearchType控制:LineSearchType=’quadcubic’(缺省值),混合的二次和三次多项式插值;LineSearchType=’cubicpoly’,三次多项式插使用fminunc和fminsearch可能会得到局部最优解.非线性规划二次规划用MATLAB软件求解,其输入格式如下:1.x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.[x,fval]=quaprog(...);7.[x,fval,exitflag]=quaprog(...);8.[x,fval,exitflag,output]=quaprog(...);(七)总结通过本次实验,让我更加熟练的使用MATLAB软件,加强了对线性规划的认识,在小组合作中,我们一起讨论,一起查找资料,合作的非常开心,过程中虽然遇到了点问题,但都很快解决。标准型为:MinZ=21XTHX+cTXs.t.AX=bbeqXAeqVLB≤X≤VUB

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功