2005杭州二中高二期末考试数学试题(理)考试时间:120分钟满分150分一.选择题:本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.集合123,22xAxxBxx,则RABð(A)A(B)B(C)RAð(D)2.设地球的半径为R,若在东经0110的经线上有北纬030的点A和南纬015的点B,则A、B两点的球面距离是(A)12R(B)3R(C)6R(D)4R3.已知公差不为零的等差数列na的前n项的和为nS,若16xxSS,11mSS*,xmN,则m的值是(A)4(B)5(C)7(D)84.已知点1,2,11,4,2,3,,,15ABCxy三点共线,那么,xy的值分别为(A)1,42(B)1,8(C)1,42(D)1,85.在ABC中,已知tansin2ABC,则:①tancot1AB;②sincos0AB;③22sincos1AB;④222coscossinABC;⑤0sinsin2AB.其中正确的是(A)①②④(B)②③⑤(C)②④⑤(D)①③⑤6.设有如下三个条件::p相交直线,mn都在平面内,且都不在平面内;:q直线,mn之中至少有一条与平面相交;:r平面与平面相交.当p成立时,q是r的(A)充分非必要条件(B)必要不充分条件(C)充分且必要条件(D)既不充分也不必要条件7.椭圆的中心在原点,焦点,EF在x轴上,A,B是椭圆的顶点,P是椭圆上一点,且PEx轴,PFABR,则此椭圆的离心率等于(A)12(B)55(C)13(D)228.甲、乙两人同时独立地打靶,谁先打中谁胜(如两人在同一次都打中,则为和局,比赛结束),已知甲命中概率为23,乙命中概率为34,则第二轮分出胜负的概率为(A)5144(B)512(C)118(D)1729.设0,2x,则函数10101sin1sinfxxx的最大值是(A)92(B)102(C)112(D)1010312210.关于x的方程cos2cosxxk在0,2有两个不同的实根,则实数k的取值范围是(A)1,3(B)1,3(C)1,30(D)1,30二.填空题:本大题共4小题;每小题4分,共16分.请把答案填在题中的横线上.11.棱长为a的正方体的外接球的表面积是.12.已知880191axaaxax,若129255aaa,则实数a=.13.已知某篮球选手罚球投蓝的命中概率为45,在进行三次罚蓝中命中两次的概率为(用数字做答).14.已知球内接正方体,则下列图形中可以是过球心的截面的序号是.(4)(3)(2)(1)AFEPB2005杭州二中高二期末考试数学答题卷题号一二三151617181920总分得分一.选择题:本大题共10小题;每小题5分,共50分.题号12345678910答案二.填空题:本大题共4小题;每小题4分,共16分.11.12.13.14.三.解答题:本大题共6小题,每小题14分,共84分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题14分)解不等式22212128xxxx.16.(本小题14分)已知数字1,2,3,4,5,6,7,8,9.(Ⅰ)能组成多少个数字不重复的四为位偶数?(Ⅱ)能组成多少个百位数字大于十位数字且十位数字大于个位数字的三位数?(Ⅲ)如果把9个数字平均分成三组,求三组都成等差数列的概率.17.(本小题14分)在四棱锥P—ABCD中,PA底面ABCD,ABC090,ADC0120,BADADABa,若0PAa.(Ⅰ)求证:平面PBD平面PAC;(Ⅱ)当3时,求点A到平面PDC的距离;(Ⅲ)当为何值时,点A在平面PBD的射影恰好是PBD的重心.18.(本小题14分)某学校的甲同学参加智力竞赛,乙同学参加演讲比赛,竞赛组委会规定每项竞赛只设金、银两个奖项,已知甲同学获金牌的概率为35,获银牌的概率为15,乙同学获金牌的概率为13,获银牌的概率为13,为鼓励学生获得好成绩,学校决定:如果学生获金牌则奖励助学金2万元,如果学生获银牌则奖励助学金1万元,不获奖则不发助学金.求学校奖金数(万元)的概率分布列及数学期望.19.(本小题14分)已知函数10,0xfxxaaax的最小值为1.(Ⅰ)若不等式1fxm对任意2,3x恒成立,求实数m的取值范围;DCBAP(Ⅱ)设数列na中,11aaa,且满足:*1nnafanN,用数学归纳法证明:*1nanN.20.(本小题14分)已知点P0,0xyxy,是直线xya上的一动点,由点P向圆O:222xyb20ab引两条切线,切点分别为A、B,直线AB与,xy轴分别交于点M、N.(Ⅰ)求OMN的面积的最小值;(Ⅱ)是否存在点P,使得0PAPB,若存在,求出点P的坐标;若不存在,说明理由.数学试卷评分细则一.1~5CDBAC6~10CBABD二.11.23a;12.1a或3a;13.48125;14.(1)(2)(4).NMBAPoyx三.15.原不等式22212128xxxx等价于222121028xxxx,3分即224134002842xxxxxxxx7分用根轴法得不等式的解为4,21,414分(注:没有挖去2,4的扣2分)16.(Ⅰ)个位数为偶数字14C,再从剩下的8个数中选3个进行排列38A,即满足条件的数共有13481344CA4分(Ⅱ)满足题意的三位数等价于从9个数字中任意选择3个进行组合,即所求的个数为3984C8分(Ⅲ)将9个数字平均分成三组的分法总数有33396333280CCCA10分三组都成等差数列的情况有:公差为1的1种1,2,34,5,67,8,9公差为1或2的有2种1,3,52,4,67,8,91,2,34,6,85,7,9公差为1或4的有1种1,5,92,3,46,7,8公差为3的有一种1,4,72,5,83,6,9所以所求的概率为5128056P14分17.解法(一)连接,ACBD交于O,以O为原点,CA为x轴,DB为y轴,建立如图所示的空间直角坐标系oxyz2分(Ⅰ)根据题意知30,0,0,,0,0,0,,0,22330,,0,,0,,,0,0222aOABaaDaPaCa平面PAC的法向量为0,1,0BD,设平面PBD的法向量为,,nxyz,则0,0nBDnPB则2,0,1n,因为2,0,10,1,00nBD所以nBD,故平面PAC平面PBD.6分(Ⅱ)设平面PCD的法向量为,,mxyz,则0,0nCDnPD333,,,,00,,,,,02222axyzaaaaxyz3,3,2m,所以点A到平面PCD的距离为0,0,33,3,2342aAPmdam10分(Ⅲ)根据题意得三角形PBD的重心G的坐标为,0,63aaG,由于AG平面PBD,所以2///,0,2,0,1332aaAGnAGn14分解法(二)(Ⅰ)连接,ACBD交于O,根据题意ACBD,而PABDBD平面PAC,因为BD平面PBD,因此,平面PAC平面PBD.3分(Ⅱ)因为,DCADPADCDC平面PAD,∴平面PAD平面PCD过A向PD作垂线AH,垂足为H,则AH平面PCD,∴AH就是点A到平面PDC的距离.6分∵3322aaPDAHPAADAHaa8分(Ⅲ)连接OP,重心G在OP上,且PG=2GO,连接AG,根据题意知,AG平面PBD,10分因此,2223PAPGPOPO,因为222,24aaPAaOAPOa,∴22222342aaa14分18.解:根据题意的可能取值为4,3,2,1,04分当4,则甲、乙都得金牌,311535P5分当3,则甲得金牌且乙得银牌或乙得金牌且甲得银牌,31114535315P6分当2,则甲得金牌乙不得牌或乙得金牌甲不得牌或甲、乙都得银牌31111115353533P7分当1,则甲得银牌乙不得牌或乙得银牌甲不得牌,11112533515P8分当0,则甲、乙都不得牌,1113515P9分随机变量的分布列为43210P154151321511511分因此,141211243210515315155E13分答:学校奖金数的数学期望为125万元.14分19.解:因为211212xfxaaaxa2分(1)122xfxx,当2,3x时,min524ff所以不等式1fxm对任意2,3x恒成立,只要514m即1944m5分(2)*1nnafanN,即1122nnnaaa7分下面用数学归纳法证明:1na①当1n时,由已知11aa9分②假设nk时,命题成立,即1ka10分当1nk时,有2111222kkkkkaaaaa11分因为1ka,则221012kkkaaa,则11ka.即命题也成立.13分根据①②知,命题对任何自然数n1都成立.14分20.(1)设点P的坐标为00xy,,则AB的方程为200xxyyb3分所以220000bbMNxy,,,,44420000112222MONbbbSOMONxyxaxa当且仅当02ax时,取到等号.6分(2)假设存在00Pxy,,满足0PAPB,连接AO、BO,根据题意知四边形OAPB是正方形,则2OPb,根据几何意义知圆心O到直线xya的距离是22a8分因此,当2222baab时,不存在满足条件的点P;9分当2ab时,有一个点,22aaP满足条件;11分当22bab时,存在两个点2222144,22abaabaPa,2222244,22abaabaPa满足条件.14分