云师堂-高考数学-2017一轮复习第九章第5讲

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第5讲古典概型第九章计数原理、概率、随机变量及其分布栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布1.基本事件的特点(1)任何两个基本事件都是________的.(2)任何事件都可以表示成______________的和(除不可能事件).互斥基本事件栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布2.古典概型(1)特点①试验中所有可能出现的基本事件只有________个,即________.②每个基本事件发生的可能性________,即____________.(2)概率公式P(A)=___________________________.有限有限性相等等可能性A包含的基本事件的个数基本事件的总数栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布1.辨明两个易误点(1)在计算古典概型中基本事件数和事件发生数时,易忽视他们是否是等可能的.(2)概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布2.古典概型中基本事件的求法(1)枚举法:适合给定的基本事件个数较少且易一一列举出的.(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时,(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.(3)排列、组合法:在求一些较复杂的基本事件的个数时,可利用排列或组合的知识.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布1.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是()A.23B.12C.13D.16C解析:从A,B中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6个基本事件,满足两数之和等于4的有(2,2),(3,1)2个基本事件,所以P=26=13.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布2.(2016·长春质量监测)已知a∈{-2,0,1,3,4},b∈{1,2},则函数f(x)=(a2-2)x+b为增函数的概率是()A.25B.35C.12D.310B解析:因为f(x)=(a2-2)x+b为增函数,所以a2-2>0,又a∈{-2,0,1,3,4},所以a∈{-2,3,4},又b∈{1,2},所以函数f(x)为增函数的概率是35,故选B.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布3.(2015·高考广东卷)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.521B.1021C.1121D.1B解析:从15个球中任取2个球共有C215种取法,其中有1个红球,1个白球的情况有C110·C15=50(种),所以P=50C215=1021.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布4.(必修3P127例3改编)同时掷两个骰子,向上点数不相同的概率为________.解析:掷两个骰子一次,向上的点数共6×6=36个可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P=1-66×6=56.56栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布解析:基本事件总数为10,满足方程cosx=12的基本事件数为2,故所求概率为P=210=15.5.在集合x|x=nπ6,n=1,2,3,…,10中任取一个元素,则所取元素恰好满足方程cosx=12的概率是________.15栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布考点一简单古典概型的求法(2015·高考湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布[解](1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=2313,故这种说法不正确.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布求古典概型概率的基本步骤(1)算出所有基本事件的个数n.(2)求出事件A包含的所有基本事件数m.(3)代入公式P(A)=mn,求出P(A).栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布1.(2016·西安地区八校联考)依次从标号为1,2,3,4,5的五个黑球和标号为6,7,8,9的四个白球中随机地各取一个球,用数对(x,y)表示事件“抽到两个球标号分别为x,y”.(1)问共有多少个基本事件?并列举出来;(2)求所抽取的标号之和小于11但不小于9或标号之和大于12的概率.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布解:(1)共有20个基本事件,列举如下:(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),共20个.(2)记事件“所抽取的标号之和小于11但不小于9”为事件A,由(1)可知事件A共含有7个基本事件,列举如下:(1,8),(1,9),(2,7),(2,8),(3,6),(3,7),(4,6),共7个.“抽取的标号之和大于12”记作事件B,则事件B包含:(4,9),(5,8),(5,9),共3个.故P(A)+P(B)=720+320=12,故抽取的标号之和小于11但不小于9或大于12的概率为12.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布考点二较复杂古典概型的求法(高频考点)古典概型是高考考查的热点,可在选择题、填空题中单独考查,也可在解答题中与统计一起考查,属容易题,以考查基本概念为主.高考对本部分内容的考查主要有以下三个命题角度:(1)根据概率求参数;(2)利用古典概型的概率公式求概率;(3)古典概型与统计的综合应用(下章讲解).栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布(2014·高考四川卷)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布[解](1)由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布求较复杂事件的概率问题的方法(1)将所求事件转化成彼此互斥的事件的和事件,再利用互斥事件的概率加法公式求解.(2)先求其对立事件的概率,再利用对立事件的概率公式求解.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布2.(1)(2015·高考江苏卷)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.(2)现有8名北京马拉松志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.①求A1被选中的概率;②求B1和C1不全被选中的概率.56栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布解:(1)由古典概型概率公式,得所求事件的概率为P=C24-C22C24=56.故填56.(2)①从8人中选出通晓日语、俄语和韩语的志愿者各1名的方法数是C13C13C12=18,A1恰被选中的方法数是C13C12=6.用M表示“A1恰被选中”这一事件,P(M)=618=13.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布②“B1和C1不全被选中”包括“选B1不选C1”,“选C1不选B1”,“B1和C1都不选”这三个事件,分别记作事件A、B、C,则A、B、C彼此互斥,且有P(A)=C13C13C13C12=16,P(B)=C13C12C13C13C12=13,P(C)=C13C12C13C13C12=13,用N表示这一事件,所以有P(N)=P(A+B+C)=P(A)+P(B)+P(C)=56.栏目导引知能训练轻松闯关名师讲坛素养提升典例剖析考点突破教材回顾夯实基础第九章计数原理、概率、随机变量及其分布规范解答——求古典概型的概率(本题满分12分)城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功