第14章整式的乘法与因式分解一、选择题1.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)2.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+13.(3x+2)(﹣x6+3x5)+(3x+2)(﹣2x6+x5)+(x+1)(3x6﹣4x5)与下列哪一个式子相同?()A.(3x6﹣4x5)(2x+1)B.(3x6﹣4x5)(2x+3)C.﹣(3x6﹣4x5)(2x+1)D.﹣(3x6﹣4x5)(2x+3)二、填空题4.分解因式:2x2﹣4x=.5.分解因式:m2﹣10m=.6.分解因式a2b﹣2ab2=.7.分解因式:ab2+a=.8.因式分解:x2﹣49=.9.因式分解:m2﹣5m=.10.分解因式:xy﹣3x=.11.分解因式:(a﹣b)2﹣4b2=.12.分解因式(a﹣b)(a﹣4b)+ab的结果是.13.分解因式:4+12(x﹣y)+9(x﹣y)2=.14.多项式a2﹣4因式分解的结果是.15.分解因式:x2﹣2x=.16.因式分解:x2+x=.17.分解因式:a2﹣2ab=.18.分解因式:3ab2﹣a2b=.19.分解因式:ma+mb=.20.分解因式:2a2﹣6a=.21.若a=2,a﹣2b=3,则2a2﹣4ab的值为.22.分解因式:x2+xy=.23.分解因式:m2﹣2m=.24.分解因式:ax﹣a=.25.因式分解:x2y﹣2xy2=.26.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.27.分解因式:2m2+10m=.28.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是.29.因式分解:m(x﹣y)+n(x﹣y)=.30.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.第14章整式的乘法与因式分解参考答案与试题解析一、选择题1.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)【考点】因式分解-运用公式法;因式分解-提公因式法.【专题】计算题.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.【解答】解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D【点评】此题考查了因式分解﹣运用公式法与提公因式法,熟练掌握因式分解的方法是解本题的关键.2.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1【考点】因式分解-提公因式法;因式分解-运用公式法.【专题】因式分解.【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.3.(3x+2)(﹣x6+3x5)+(3x+2)(﹣2x6+x5)+(x+1)(3x6﹣4x5)与下列哪一个式子相同?()A.(3x6﹣4x5)(2x+1)B.(3x6﹣4x5)(2x+3)C.﹣(3x6﹣4x5)(2x+1)D.﹣(3x6﹣4x5)(2x+3)【考点】因式分解-提公因式法.【分析】首先把前两项提取公因式(3x+2),再进一步提取公因式﹣(3x6﹣4x5)即可.【解答】解:原式=(3x+2)(﹣x6+3x5﹣2x6+x5)+(x+1)(3x6﹣4x5)=(3x+2)(﹣3x6+4x5)+(x+1)(3x6﹣4x5)=﹣(3x6﹣4x5)(3x+2﹣x﹣1)=﹣(3x6﹣4x5)(2x+1).故选:C.【点评】此题主要考查了因式分解,关键是正确找出公因式,进行分解.二、填空题4.分解因式:2x2﹣4x=2x(x﹣2).【考点】因式分解-提公因式法.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.5.分解因式:m2﹣10m=m(m﹣10).【考点】因式分解-提公因式法.【分析】直接提取公因式m即可.【解答】解:m2﹣10m=m(m﹣10).故答案为:m(m﹣10).【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.6.分解因式a2b﹣2ab2=ab(a﹣2b).【考点】因式分解-提公因式法.【分析】直接提取公因式ab即可.【解答】解:a2b﹣2ab2=ab(a﹣2b),故答案为:ab(a﹣2b).【点评】此题主要考查了提公因式法分解因式,关键是正确确定公因式,当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.7.分解因式:ab2+a=a(b2+1).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是a,提出a即可解出此题.【解答】解:ab2+a=a(b2+1).故答案为:a(b2+1).【点评】此题考查的是对公因式的提取,只要找出公因式即可解出此题.8.因式分解:x2﹣49=(x+7)(x﹣7).【考点】因式分解-运用公式法.【分析】利用平方差公式直接进行分解即可.【解答】解:x2﹣49=(x﹣7)(x+7),故答案为:(x﹣7)(x+7).【点评】此题主要考查了平方差公式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).9.因式分解:m2﹣5m=m(m﹣5).【考点】因式分解-提公因式法.【分析】先确定公因式m,然后提取分解.【解答】解:m2﹣5m=m(m﹣5).故答案为:m(m﹣5).【点评】此题考查了提公因式法分解因式,关键是确定公因式m.10.分解因式:xy﹣3x=x(y﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式分解因式即可.【解答】解:xy﹣3x=x(y﹣3);故答案为:x(y﹣3).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.11.分解因式:(a﹣b)2﹣4b2=(a+b)(a﹣3b).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).故答案为:(a+b)(a﹣3b).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.分解因式(a﹣b)(a﹣4b)+ab的结果是(a﹣2b)2.【考点】因式分解-运用公式法.【分析】首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可.【解答】解:(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.【点评】此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.13.分解因式:4+12(x﹣y)+9(x﹣y)2=(3x﹣3y+2)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】原式利用完全平方公式分解即可.【解答】解:原式=[2+3(x﹣y)]2=(3x﹣3y+2)2.故答案为:(3x﹣3y+2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.14.多项式a2﹣4因式分解的结果是(a+2)(a﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.15.分解因式:x2﹣2x=x(x﹣2).【考点】因式分解-提公因式法.【分析】提取公因式x,整理即可.【解答】解:x2﹣2x=x(x﹣2).故答案为:x(x﹣2).【点评】本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.16.因式分解:x2+x=x(x+1).【考点】因式分解-提公因式法.【分析】根据观察可知原式公因式为x,直接提取可得.【解答】解:x2+x=x(x+1).【点评】本题考查了提公因式法分解因式,通过观察可直接得出公因式,结合观察法是解此类题目的常用的方法.17.分解因式:a2﹣2ab=a(a﹣2b).【考点】因式分解-提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣2ab=a(a﹣2b),故答案为:a(a﹣2b).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.18.分解因式:3ab2﹣a2b=ab(3b﹣a).【考点】因式分解-提公因式法.【分析】确定出公因式为ab,然后提取即可.【解答】解:3ab2﹣a2b=ab(3b﹣a).故答案为:ab(3b﹣a).【点评】本题考查了提公因式法分解因式,比较简单,准确确定出公因式是解题的关键.19.分解因式:ma+mb=m(a+b).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这里的公因式是m,直接提取即可.【解答】解:ma+mb=m(a+b).故答案为:m(a+b)【点评】本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.20.分解因式:2a2﹣6a=2a(a﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】观察原式,找到公因式2a,提出即可得出答案.【解答】解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).【点评】此题主要考查了因式分解的基本方法一提公因式法.本题只要将原式的公因式2a提出即可.21.若a=2,a﹣2b=3,则2a2﹣4ab的值为12.【考点】因式分解-提公因式法.【分析】首先提取公因式2a,进而将已知代入求出即可.【解答】解:∵a=2,a﹣2b=3,∴2a2﹣4ab=2a(a﹣2b)=2×2×3=12.故答案为:12.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.22.分解因式:x2+xy=x(x+y).【考点】因式分解-提公因式法.【分析】直接提取公因式x即可.【解答】解:x2+xy=x(x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.23.分解因式:m2﹣2m=m(m﹣2).【考点】因式分解-提公因式法.【专题】计算题.【分析】直接把公因式m提出来即可.【解答】解:m2﹣2m=m(m﹣2).【点评】本题主要考查提公因式法分解因式,准确找出公因式m是解题的关键.24.分解因式:ax﹣a=a(x﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】提公因式法的直接应用.观察原式ax﹣a,找到公因式a,提出即可得出答案.【解答】解:ax﹣a=a(x﹣1).故答案为:a(x﹣1)【点评】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.要求灵活运用各种方法进行因式分解.该题是直接提公因式法的运用.25.因式分解:x2y﹣2xy2=xy(x﹣2y).【考点】因式分解-提公因式法.【专题】因式分解.【分析】直接提取公因式xy,进而得出答案.【解答】解:x2y﹣2xy2=xy(x﹣2y).故答案为:xy(x﹣