《多边形的内角和及角的计算》热点专题高分特训(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

多边形的内角和及角的计算(人教版)一、单选题(共14道,每道7分)1.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是()A.四边形B.五边形C.六边形D.八边形答案:C解题思路:∵多边形的外角和都等于360°,∴这个多边形的内角和为720°,∴(n-2)×180°=720°,∴n=6,故选C.试题难度:三颗星知识点:多边形的内角和与外角和2.一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形答案:C解题思路:∵多边形的外角和都等于360°,正多边形的每个外角都相等,∴n=10,故选C.试题难度:三颗星知识点:多边形的内角和与外角和3.若一个n边形的每一个内角为135°,则边数n的值是()A.6B.7C.8D.10答案:C解题思路:多边形每个外角都相等,均为180°-135°=45°,由多边形外角和为360°,知n=360°÷45°=8,故选C.试题难度:三颗星知识点:多边形的内角和与外角和4.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了()米.A.8B.9C.10D.12答案:A解题思路:每走1米,左转45°,则机器人走过的轨迹为边长为1的正多边形.题目所求的是正多边形的周长,故只需求边数n即可.∵正多边形的每个外角都相等,∴n=360°÷45°=8,∴机器人共走了:8×1=8(米).故选A.试题难度:三颗星知识点:多边形的外角和定理5.已知:如图,在△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数().A.50°B.60°C.70°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形内角和定理6.一个正方形和两个等边三角形的位置如图所示,若∠2=70°,则∠1+∠3=()A.70°B.80°C.90°D.100°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理7.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为()A.42°B.60°C.78°D.80°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理8.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为()A.65°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.30°B.25°C.20°D.15°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,且BD,CE交于点O.若∠A=50°,∠ACB=60°,则∠1的度数为()A.130°B.120°C.110°D.100°答案:A解题思路:试题难度:三颗星知识点:三角形外角定理11.如图,点C在AB的延长线上,CE⊥AF于点E,交BF于点D.若∠F=40°,∠C=20°,则∠FBC的度数为()A.100°B.110°C.120°D.130°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理12.如图,在△ABC中,∠C=30°,∠E=45°.若AE∥BC,则∠AFD的度数是()A.45°B.60°C.75°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理13.已知:如图,在△ABC中,∠EFB+∠ADC=180°,∠1=∠2.求证:AB∥DG.证明:如图,∵∠EFB+∠ADC=180°(已知)∠ADB+∠ADC=180°(平角的定义)∴∠EFB=∠ADB(____________________)∴__________(同位角相等,两直线平行)∴∠1=______(两直线平行,同位角相等)∵∠1=∠2(已知)∴∠2=∠BAD(等量代换)∴__________(内错角相等,两直线平行)①同角或等角的余角相等;②同角或等角的补角相等;③等量代换;④AB∥DG;⑤EF∥AD;⑥∠BAD;⑦∠2.以上空缺处依次所填正确的是()A.②⑤⑥④B.①⑤⑦④C.②④⑥⑤D.③⑤⑦④答案:A解题思路:试题难度:三颗星知识点:平行线的性质与判定14.已知:如图,在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE于点F,过B作BD⊥BC于点B,交CF的延长线于点D.若∠EAC=25°,求∠D的度数.解:如图,∵CF⊥AE(已知)∴∠EAC+∠2=90°(直角三角形两锐角互余)∵∠ACB=90°即∠1+∠2=90°(已知)___________________∴∠1=25°(等量代换)∵BD⊥BC(已知)∴∠DBC=90°(垂直的性质)∴∠D+∠1=90°(直角三角形两锐角互余)∴∠D=90°-∠1=90°-25°=65°(等式性质)横线处应填写的过程最恰当的是()A.∴∠1=∠EAC(同角或等角的补角相等)∵∠EAC=25°(已知)B.∴∠1=∠EAC(等量代换)∵∠2=65°(已知)C.∴∠1+∠EAC=90°(直角三角形两锐角互余)∵∠EAC=25°(已知)D.∴∠1=∠EAC(同角或等角的余角相等)∵∠EAC=25°(已知)答案:D解题思路:本题主要利用直角三角形两锐角互余和同角或等角的余角相等进行角的计算.故选D.试题难度:三颗星知识点:同角或等角的余角相等

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功