【解析版】2014-2015年北京市门头沟区八年级上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014-2015学年北京市门头沟区八年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的,请将答案填写在下面表格内.1.25的算术平方根是()A.5B.±5C.±D.2.下列实数中,是无理数的是()A.B.﹣0.3C.D.3.下列计算中正确的是()A.÷3=3B.2+3=5C.2×3=6D.()2=﹣44.下列图形是轴对称图形的是()A.B.C.D.5.方程x2﹣4x﹣6=0的根的情况是()A.有两个相等实根B.有两个不等实根C.没有实根D.以上答案都有可能6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.2,2,3B.2,3,4C.3,4,5D.5,8,137.下列根式中,最简二次根式是()A.B.C.D.8.下列各式中,正确的是()A.=x3B.=C.=﹣D.+=9.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条二、填空题(本题共20分,每小题2分)11.如果分式的值为0,那么x=.12.使有意义的x的取值范围是.13.如图,点D、E分别在线段AB、AC上,AB=AC,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).14.将一元二次方程x2﹣6x﹣5=0化成(x﹣3)2=b的形式,则b=.15.一个三角形两边长分别为3和8,第三边长为奇数,则第三边长为.16.当1<x<2时,化简+=.17.已知x=1是关于x的一元二次方程2x2+kx﹣1=0的一个根,则实数k的值是.18.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.若∠BAE=40°,则∠C=°.19.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示R,则R=.20.如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=.三、计算(本题共10分,每小题5分)21..22.计算:4÷(﹣)×.四、解方程(本题共15分,每小题15分)23.(15分)(2014秋•门头沟区期末)(1)3x2﹣6x﹣2=0(2)3x(x+2)=2x+4(3)+=1.五、解答题(本题共17分,其中26-27每小题5分,28题7分)26.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.27.如图,△ABC中,AD⊥BC于点D,AD=BD,∠C=65°,求∠BAC的度数.28.已知:在Rt△ABC中,∠C=90°.(1)请在线段BC上作一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.六、解答题(本题共18分,每小题6分)29.已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.30.先化简,再求值:﹣(÷),其中x2﹣3x﹣4=0.31.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.七、解答题(本题10分)32.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请求出∠APE的度数.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形△ABF,联结AD、BE和CF交于点P,求证:PB+PC+PA=BE.2014-2015学年北京市门头沟区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的,请将答案填写在下面表格内.1.25的算术平方根是()A.5B.±5C.±D.考点:算术平方根.分析:根据算术平方根的定义即可解决问题.解答:解:∵52=25,∴25的算术平方根是5,故选A.点评:本题考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.下列实数中,是无理数的是()A.B.﹣0.3C.D.考点:无理数.分析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的选项.解答:解:﹣0.3,,=﹣2,都是有理数,只有是无理数.故选A.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.下列计算中正确的是()A.÷3=3B.2+3=5C.2×3=6D.()2=﹣4考点:二次根式的乘除法;二次根式的加减法.分析:根据二次根式的乘法法则和除法法则求解.解答:解:A、÷3=,原式计算错误,故本选项错误;B、2和3不是同类项,不能合并,故本选项错误;C、2×3=6,计算正确,故本选项正确;D、()2=4,计算错误,故本选项错误.故选C.点评:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则和除法法则.4.下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解答:解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.方程x2﹣4x﹣6=0的根的情况是()A.有两个相等实根B.有两个不等实根C.没有实根D.以上答案都有可能考点:根的判别式.分析:直接根据一元二次方程根的判别式求出△的值即可作出判断.解答:解:∵方程x2﹣4x﹣6=0中,△=(﹣4)2﹣4×1×(﹣6)=16+24=40>0,∴方程有两个不相等的实数根.故选B.点评:本题考查的是一元二次方程根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.2,2,3B.2,3,4C.3,4,5D.5,8,13考点:三角形三边关系.分析:判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、22+22≠32,故不能组成直角三角形,故此选项错误;B、22+32≠42,故不能组成直角三角形,故此选项错误;C、32+42=52,故能组成直角三角形,故此选项正确;D、52+82≠132,故不能组成直角三角形,故此选项错误.故选C.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.下列根式中,最简二次根式是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、=,被开方数含分母,不是最简二次根式;B、=,被开方数含分母,不是最简二次根式;C、=2,被开方数含能开得尽方的因数,不是最简二次根式;D、,符合最简二次根式的定义,故选D.点评:本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.下列各式中,正确的是()A.=x3B.=C.=﹣D.+=考点:分式的混合运算.分析:根据同底数幂的除法、分式的通分进行计算即可.解答:解:A、=x4;故A错误;B、不能化简,故B错误;C、=﹣,故C错误;D、+=+=,故D正确,故选D.点评:本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.9.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定考点:等腰三角形的判定与性质;平行线的性质.分析:根据角平分线的定义可得∠ABE=∠CBE,∠ACE=∠BCE,再根据两直线平行,内错角相等可得∠CBE=∠BEM,∠BCE=∠CEN,然后求出∠ABE=∠BEM,∠ACE=∠CEN,根据等角对等边可得BM=ME,CN=NE,然后求出△AMN的周长=AB+AC.解答:解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN∥BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.点评:本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条考点:作图—应用与设计作图;等腰三角形的判定.专题:压轴题.分析:利用等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.解答:解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选:B.点评:此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.二、填空题(本题共20分,每小题2分)11.如果分式的值为0,那么x=.考点:分式的值为零的条件.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得2x﹣1=0,由2x﹣1=0,得x=,故答案为.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.使有意义的x的取值范围是x≥2.考点:二次根式有意义的条件.专题:计算题.分析:二次根式的被开方数是非负数,所以2x﹣4≥0,通过解该不等式即可求得x的取值范围.解答:解:根据题意,得2x﹣4≥0,解得,x≥2;故答案是:x≥2.点评:本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,点D、E分别在线段AB、AC上,AB=AC,不添加新的线段和字母,要使△ABE≌△A

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功