2014-2015学年河南省周口市扶沟县八年级(上)期中数学试卷一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12B.11C.10D.93.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3B.2C.D.15.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1B.﹣1C.5D.﹣57.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.28.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是三角形.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.15.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE对称,求∠ABC和∠C的度数.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a>b>c,a=8,那么满足条件的三角形共多少个?2014-2015学年河南省周口市扶沟县八年级(上)期中数学试卷参考答案与试题解析一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个考点:轴对称图形.分析:根据轴对称图形的概念结合图形求解.解答:解:轴对称图形有:第一个、第二个、第三个、第五个.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12B.11C.10D.9考点:多边形内角与外角.专题:计算题.分析:根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.解答:解:∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数==12.故选A.点评:本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°考点:全等三角形的应用.分析:先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.解答:解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF,∴∠2=∠3,∠1=∠4,∵∠3+∠4=90°,∴∠ABC+∠DFE=90°.故选B.点评:本题考查的是全等三角形的判定及性质,直角三角形的性质,属较简单题目.4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3B.2C.D.1考点:线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.解答:解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.点评:本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强.5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C考点:全等三角形的性质.分析:根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.解答:解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.点评:本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1B.﹣1C.5D.﹣5考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,根据这一关系,就可以求出a=﹣(﹣2)=2,b=3.解答:解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得a=﹣(﹣2)=2,b=3.∴a+b=5故选C.点评:本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5B.4C.3D.2考点:三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.分析:过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.解答:解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.点评:本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.专题:规律型.分析:利用已知得出图形的变换规律,进而得出经过第2014次变换后所得A点坐标与第2次变换后的坐标相同求出即可.解答:解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2014÷4=503…2,∴经过第2014次变换后所得A点坐标与第2次变换后的坐标相同,故其坐标为:(a,﹣b).故选:A.点评:此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是钝角三角形.考点:三角形的外角性质.分析:根据三角形的外角与相邻的内角互为邻补角求出内角,再根据三角形的形状定义判断即可.解答:解:∵△ABC的一个外角为50°,∴与它相邻的内角为180°﹣50°=130°,∴△ABC一定是钝角三角形.故答案为:钝角.点评:本题考查了三角形的外角性质,求出与它相邻的内角是钝角是解题的关键.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为7.考点:全等三角形的性质.分析:根据△ABE的周长求出AE,再根据全等三角形对应边相等解答即可.解答:解:∵△ABE的周长为32,AB=14,BE=11,∴AE=32﹣14﹣11=32﹣25=7,∵△ABE≌△ACD,∴AD=AE=7.故答案为:7.点评:本题考查了全等三角形对应边相等的性质,三角形的周长,熟记性质并准确找出对应边是解题的关键.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为2.考点:角平分线的性质;垂线段最短.专题:动点型.分析:过P作PE⊥OM于E,根据垂线段最短,得出当Q与E重合时,PQ最小,根据角平分线性质求出PE=PA,即可求出答案.解答:解:过P作PE⊥OM于E,当Q与E重合时,PQ最小,∵PE⊥OM,PA⊥ON,OP平分∠MON,∴PE=PA=2,即PQ的最小值是2,故答案为: