【解析版】福建省漳州市2014-2015学年八年级上期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

福建省漳州市2014-2015学年八年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2014•莱芜)下列四个实数中,是无理数的为()A.0B.﹣3C.D.考点:无理数.专题:常规题型.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、0是整数,是有理数,故A选项错误;B、﹣3是整数,是有理数,故B选项错误;C、=2是无理数,故C选项正确;D、是无限循环小数,是有理数,故D选项错误.故选:C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2014秋•漳州期末)无理数的整数部分是()A.1B.2C.3D.4考点:估算无理数的大小.分析:看在哪两个整数之间即可得到它的整数部分.解答:解:∵,∴2<<3,∴的整数部分为2,故选:B.点评:本题考查估算无理数的大小的知识;用“夹逼法”得到无理数的范围是解决本题的关键.3.(2014秋•漳州期末)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.解答:解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键.4.(2014秋•漳州期末)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为()A.①②B.②③C.③④D.①④考点:勾股定理的逆定理.分析:利用勾股定理的逆定理对四个答案进行逐一判断即可.解答:解:①、错误,∵92+162=337≠252=625,∴不能作为直角三角形边长;②、正确,∵82+152=172=289,∴能作为直角三角形边长;③、正确,∵72+242=252=625,∴能作为直角三角形边长;④、错误,∵122+152=369≠202=400,∴不能作为直角三角形边长.故选B.点评:本题考查的是利用勾股定理的逆定理判断三角形是否为直角三角形,即三角形的三边若满足a2+b2=c2,则此三角形是直角三角形.5.(2014秋•漳州期末)下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角相等考点:命题与定理.分析:认真读题,只要甄别,其中A、B、C选项中都没有“对应”二字,都是错误的,只有D是正确的.解答:解:A、全等三角形的对应边上的高相等,故错误;B、全等三角形的对应边上的中线相等,故错误;C、全等三角形的对应角的角平分线相等,故错误;D、全等三角形的对应角相等,正确.故选D.点评:本题考查了全等三角形的性质;注意全等三角形的性质中指的是各对应边上高,中线,角平分线相等.对性质中对应的真正理解是解答本题的关键.6.(2014秋•漳州期末)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6xD.3x3﹣8x2+1考点:整式的除法.分析:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.解答:解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.故选:D.点评:考查了整式的除法,多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式.7.(2014秋•漳州期末)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A.4B.8C.10D.4或8考点:等腰三角形的性质;三角形三边关系.分析:根据等腰三角形的性质分为两种情况解答:当边长4cm为腰或者4cm底边时.解答:解:分情况考虑:当4是腰时,则底边长是20﹣8=12,此时4,4,12不能组成三角形,应舍去;当4是底边时,腰长是(20﹣4)×=8,4,8,8能够组成三角形.此时腰长是8.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(2014秋•漳州期末)要直观反映我市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.条形统计图C.频数分布统计图D.扇形统计图考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:A.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.9.(2014秋•漳州期末)如图,有两棵树,一颗高10m,另一颗高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.5mB.10mC.13mD.17m考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=5m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=5m,EC=12m,AE=AB﹣EB=10﹣5=5(m),在Rt△AEC中,AC===13(m).故小鸟至少飞行13m.故选:C.点评:本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.10.(2014秋•漳州期末)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2考点:平方差公式的几何背景.分析:左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.解答:解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.点评:此题主要考查了平方差公式的几何背景.解题的关键是运用阴影部分的面积相等得出关系式.11.(2014秋•漳州期末)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO考点:作图—基本作图;角平分线的性质.分析:利用尺规作图的痕迹可得AE、BF是△ABC的内角平分线,即可得出答案.解答:解:∵由尺规作图的痕迹可得AE、BF是△ABC的内角平分线,∴点O到△ABC三边的距离相等,CG也是△ABC的一条内角平分线,故D选项不正确,故选:D.点评:本题主要考查了基本作图及角平分线的性质,解题的关键是熟记角平分线的作图方法.12.(2014秋•漳州期末)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是()A.10B.8C.6D.4考点:等腰三角形的判定与性质;三角形的面积.分析:延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.解答:解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC═S△ABC=×12=6,故选C.点评:本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.二、填空题(共8小题,每小题3分,共24分)13.(3分)(2013•泰州)9的平方根是±3.考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.14.(3分)(2014秋•漳州期末)计算(2m+n)(2m﹣n)=4m2﹣n2.考点:平方差公式.专题:计算题.分析:原式利用平方差公式计算即可得到结果.解答:解:原式=4m2﹣n2.故答案为:4m2﹣n2.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.(3分)(2014秋•漳州期末)计算:﹣8x3y2÷2xy=﹣4x2y.考点:整式的除法.分析:利用系数,同底数幂分别相除后,作为商的因式求解.解答:解:﹣8x3y2÷2xy=﹣4x2y.故答案为:﹣4x2y.点评:本题主要考查了整式的除法,解题的关键是熟记,把系数同底数幂分别相除后,作为商的因式.16.(3分)(2014秋•漳州期末)若+(b﹣3)2=0,则a+b=2.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:利用非负数的性质解得a,b,求得a+b.解答:解:∵+(b﹣3)2=0,≥0,(b﹣3)2≥0,∴a+1=0,b﹣3=0,解得:a=﹣1,b=3,∴a+b=2,故答案为:2.点评:本题主要考查了非负数的性质,利用算术平方根的非负性求值是解答此题的关键.17.(3分)(2014秋•漳州期末)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有16人.考点:频数与频率.分析:利用频率=,进而得出该班身高在1.60m以下的学生数.解答:解:∵测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,∴该班身高在1.60m以下的学生有:40×0.4=16(人).故答案为:16.点评:此题主要考查了频数与频率,正确掌握频数与频率之间的关系是解题关键.18.(3分)(2014秋•漳州期末)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件∠ABC=∠DCB,本题答案不唯一即可.考点:全等三角形的判定.专题:证明题;开放型.分析:添加的条件是∠ABC=∠DCB,根据全等三角形的判定定理AAS即可求出答案.解答:解:添加的条件是∠ABC=∠DCB,理由是:在△ABC和△DCB中∴△ABC≌△DCB(AAS),故答案为:∠ABC=∠DCB.本题答案不唯一.点评:本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行证明是解此题的关键.19.(3分)(2014秋•漳州期末)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,若CE=1,∠AEC=45°,则BE的长是.考点:线段垂直平分线的性质.分析:根据等腰直角三角形的性质得到AE=CE,然后根据线段的操作频繁的性质即可得到结果.解答:解:∵∠C=90°,∠AEC=45°,∴∠EAC=45°,∴AE=CE=,∵DE垂直平分AB,∴BE=AE=,故答案为:.点评:本题考查了线段垂

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功