福建省福州市福清市2014-2015学年八年级下学期期中数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列计算正确的是()A.B.C.D.2.(2分)下列二次根式中能与合并的二次根式的是()A.B.C.D.3.(2分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=5,b=12,c=134.(2分)若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.(2分)如图是一张直角三角形的纸片,两直角边AC=6、BC=8,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4B.5C.6D.106.(2分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°7.(2分)如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形8.(2分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.9.(2分)如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11B.2<m<22C.10<m<12D.2<m<610.(2分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.6二、填空题(共8小题,每小题2分,满分16分)11.(2分)化简:=.12.(2分)等腰三角形的腰为13cm,底边长为10cm,则它的面积为.13.(2分)是整数,则正整数n的最小值是.14.(2分)如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.15.(2分)如图,矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,若BD=4,则AD=.16.(2分)如图所示,平行四边形ABCD,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.17.(2分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.18.(2分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.三、解答题19.(12分)(1)﹣2(5﹣);(2)﹣÷+(3﹣)(3+).20.(8分)如图:已知▱ABCD的对角线AC、BD相交于点O,EF过点O,且与BC、AD分别相交于E、F.求证:OE=OF.21.(8分)已知,如图四边形ABCD中,∠B=90°,AB=4,BC=3,AD=13,CD=12,求:四边形ABCD的面积.22.(8分)如图,在Rt△ABC中,∠C=90°,O是斜边AB上的中点,AE=CE,BF∥AC,求证:四边形BCEF是矩形.23.(8分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.24.(9分)有一块直角三角形绿地,量得直角边分别为BC=6cm,AC=8cm,现在要将绿地扩充成等腰三角形,且扩充部分是以AC=8cm为直角边的直角三角形,请画出扩充后符合条件的所有等腰三角形(注明相等的边),并直接求出扩充后等腰三角形绿地的周长.25.(11分)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.福建省福州市福清市2014-2015学年八年级下学期期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列计算正确的是()A.B.C.D.考点:二次根式的混合运算.分析:根先化简二次根式,再计算.==5,(2)2=12.解答:解:A、==5,故本选项错误;B、2﹣=,故本选项错误;C、(2)2=12,故本选项错误;D、==,故本选项正确.故选D.点评:本题考查了二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.2.(2分)下列二次根式中能与合并的二次根式的是()A.B.C.D.考点:同类二次根式.分析:此题实际上是找出与是同类二次根式的选项.解答:解:=2,与不是同类二次根式,不能合并,故本选项错误;B、=,与不是同类二次根式,不能合并,故本选项错误;C、=,与不是同类二次根式,不能合并,故本选项错误;D、=3,与,是同类二次根式,能合并,故本选项正确;故选:D.点评:本题考查了二次根式的性质,同类二次根式的应用,注意:几个二次根式,化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫同类二次根式.3.(2分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=5,b=12,c=13考点:勾股定理的逆定理.分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、1.52+22≠32,故不是直角三角形,故此选项符合题意;B、72+242=252,故是直角三角形,故此选项不合题意;C、62+82=102,故是直角三角形,故此选项不合题意;D、52+122=132,故是直角三角形,故此选项不合题意.故选A.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.(2分)若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.解答:解:∵(m﹣1)2+=0,∴m﹣1=0,n+2=0;∴m=1,n=﹣2,∴m+n=1+(﹣2)=﹣1故选:A.点评:题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.(2分)如图是一张直角三角形的纸片,两直角边AC=6、BC=8,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4B.5C.6D.10考点:翻折变换(折叠问题).分析:如图,首先运用翻折变换的性质证明BE=AE=AB;其次运用勾股定理求出AB的长度,即可解决问题.解答:解:如图,由翻折变换的性质得:BE=AE=AB;∵△ABC为直角三角形,且AC=6,BC=8,∴AB2=62+82,∴AB=10,BE=5,故选B.点评:该题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;牢固掌握翻折变换的性质、勾股定理等几何知识点是灵活运用、解题的基础和关键.6.(2分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°考点:平行四边形的性质.分析:首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.解答:解:设平行四边形中两个内角分别为x°,3x°,则x+3x=180,解得:x=45°,∴其中较小的内角是45°.故选B.点评:此题考查了平行四边形的性质.注意平行四边形的邻角互补.7.(2分)如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形考点:矩形的判定;平行四边形的判定.分析:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故以上答案都正确.解答:解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.故选C.点评:本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.8.(2分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.考点:矩形的性质.分析:本题主要根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.解答:解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,∵,∴△EBO≌△FDO(ASA),∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选:B.点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.9.(2分)如图,平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11B.2<m<22C.10<m<12D.2<m<6考点:平行四边形的性质;三角形三边关系.专题:计算题.分析:根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA﹣OB<m<OA+OB,代入求出即可.解答:解:∵四边形ABCD是平行四边形,AC=12,BD=10,∴OA=OC=6,OD=OB=5,在△OAB中,OA﹣OB<m<OA+OB,∴6﹣5<m<6+5,∴1<m<11.故选A.点评:本题考查对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA、OB后得出OA﹣OB<m<OA+OB是解此题的关键.10.(2分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.6考点:轴对称-最短路线问题;菱形的性质.专题:压轴题;探究型.分析:先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.解答:解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB==5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴