【解析版】福州市时代中学2014-2015年八年级下期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

福建省福州市时代中学2014-2015学年八年级(下)期末数学试卷一.选择题(每题2分,满分20分)1.(2014春•福州校级期末)下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.矩形C.等腰梯形D.平行四边形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故选项错误;B、是轴对称图形,又是中心对称图形.故选项正确;C、是轴对称图形,不是中心对称图形.故选项错误;D、不是轴对称图形,是中心对称图形.故选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2014春•福州校级期末)菱形和矩形一定具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角考点:菱形的性质;矩形的性质.分析:根据菱形和矩形的性质对各选项分别进行判断.解答:解:A、菱形和矩形的对角线都互相平分,所以A选项正确;B、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以C选项错误;D、菱形的对角线互相垂直平分且平分没组对角,而矩形的对角线互相平分且相等,所以D选项错误.故选A.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了矩形的性质.3.(2007•眉山)一元二次方程x2+x+2=0的根的情况是()A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=1,b=1,c=2,∴△=b2﹣4ac=12﹣4×1×2=﹣7<0,∴方程没有实数根.故选C.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.(2014春•福州校级期末)某班体育委员记录第一组七位同学定点投篮(每人投十个),投进篮筐的个数情况依次是:5,6,5,3,6,8,9.则这组数据的平均数和中位数分别是()A.6,6B.6,8C.7,6D.7,8考点:中位数;加权平均数.分析:利用中位数及平均数的定义求解即可.解答:解:3,5,5,6,6,8,9中平均数为=6,中位数是6,故选:A.点评:本题主要考查了中位数及平均数,解题的关键是熟记求中位数的方法.5.(2012•甘谷县模拟)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1B.2C.2D.12考点:翻折变换(折叠问题);勾股定理的应用;菱形的性质;矩形的性质.专题:几何图形问题.分析:根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.解答:解:∵菱形AECF,AB=6,∴假设BE=x,∴AE=6﹣x,∴CE=6﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,利用勾股定理得出:BC2+BE2=EC2,BC===2,故选:C.点评:此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6.(2007•绍兴)如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格考点:生活中的轴对称现象;生活中的平移现象.专题:压轴题;网格型.分析:认真观察图形,找准特点,根据轴对称的性质及平移变化得出.解答:解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.点评:主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.7.(2012春•黄山期末)下列各命题都成立,而它们的逆命题不能成立的是()A.两直线平行,同位角相等B.全等三角形的对应角相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和考点:命题与定理.分析:把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、逆命题是同位角相等,两直线平行,成立;B、逆命题是对应角相等的三角形是全等三角形,不成立;C、逆命题是菱形是四边相等的四边形,成立;D、逆命题是一条边的平方等于另外两条边的平方和的三角形是直角三角形,成立.故选B.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.(2013•日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组考点:频数(率)分布直方图;中位数;众数.分析:各组的频数的和就是总人数,然后根据百分比、众数、中位数的定义即可作出判断.解答:解:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校全体教职工总人数的比例是:×100%=20%,故正确;C、教职工年龄的中位数一定落在40≤x<42这一组,正确;D、教职工年龄的众数一定在38≤x<40这一组.错误.故选:D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9.(2014•福州模拟)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=4,AO=3,则四边形DEFG的周长为()A.6B.7C.8D.12考点:三角形中位线定理.分析:根据平行四边形的判定以及三角形中位线的运用,由中位线定理,可得EF∥AO,FG∥BC,且都等于边长BC的一半,由此可得问题答案.解答:解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=2,同理GD=EF=AO=1.5,∴四边形DEFG的周长为1.5+1.5+2+2=7.故选:B.点评:本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.10.(2014•福州模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为C(1,k),与y轴的交点在(0,2)、(0,3)之间(不包含端点),则k的取值范围是()A.2<k<3B.<k<4C.<k<4D.3<k<4考点:抛物线与x轴的交点.分析:首先把顶点坐标代入函数解析式得到k=a+b+c=c,利用c的取值范围可以求得k的取值范围.解答:解∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(不包含端点),∴2<c<3,∴﹣1<﹣<﹣.∴b=﹣2a=,∴k=a+b+c=c.∵2<c<3,∴<c<4,即<k<4.故选C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二.填空题(每题2分,共20分)11.(2013春•东丰县期末)已知某一组数据x1,x2,x3,…,x20,其中样本方差S2=[(x1﹣5)2+(x2﹣5)2+…+(x20﹣5)2],则这20个数据的总和是100.考点:方差;算术平均数.分析:先根据方差的计算公式:s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],其中n是样本容量,表示平均数,得出本题中20个数据的平均数为5,再根据平均数的定义求解.解答:解:∵一组数据x1,x2,x3,…,x20,其中样本方差S2=[(x1﹣5)2+(x2﹣5)2+…+(x20﹣5)2],∴这20个数据的平均数为5,∴这20个数据的总和是5×20=100.故答案为100.点评:本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为,则方差s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],平均数是指在一组数据中所有数据之和再除以数据的个数.12.(2014春•福州校级期末)矩形的一条较短边长是5cm,两条对角线的夹角是60°,则这个矩形的周长是10+10cm.考点:矩形的性质.分析:由矩形的性质得出OA=OB,证明△AOB是等边三角形,得出OA=AB=5cm,AC=2OA=10cm,由勾股定理求出BC,即可得出矩形ABCD的周长.解答:解:如图所示:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=10cm,∴BC===5,∴矩形ABCD的周长=2(AB+BC)=10+10(cm),故答案为:10+10.点评:本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.13.(2009•大冶市校级模拟)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针转动一个角度到A1BCl的位置,使得点A,B,C1在同一条直线上,那么这个角度等于120度.考点:旋转的性质.专题:计算题.分析:利用旋转的性质计算.解答:解:三角板中∠ABC=60°,旋转角是∠CBC1,则∠CBC1=180﹣60=120°.这个旋转角度等于120度.故填120.点评:正确记忆三角板的角的度数,理解旋转角的概念,是解决本题的关键.14.(2009•遂宁)如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.考点:勾股定理的逆定理;直角三角形斜边上的中线.分析:由勾股定理的逆定理,判断三角形为直角三角形,再根据直角三角形的性质直接求解.解答:解:∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC是直角三角形,∴BD=AC=cm.点评:解决此题的关键是熟练运用勾股定理的逆定理判定直角三角形,明确了直角三角形斜边上的中线等于斜边上的一半之后此题就不难了.15.(2012秋•太原期末)某商品原售价400元,连续两次降价后售价为324元,该商品平均降价的百分率为10%.考点:一元二次方程的应用.专题:增长率问题.分析:等量关系为:原来的售价×(1﹣降低的百分率)2=324,把相关数值代入计算即可.解答:解:设该商品平均降价的百分率为x,根据题意得出:400(1﹣x)2=324,解得:x=0.1,∴该商品平均降价的百分率为:10%.故答案为:10%.点评:此题主要考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功