广东省深圳市南山区2015届九年级上学期期末数学试卷一.选择题(本题有12小题,每小题3分,共36分,在每小题给出的选项中,只一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)图中三视图所对应的直观图是()A.B.C.D.2.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°3.(3分)下列函数中,y随x的增大而减少的是()A.y=B.y=C.y=﹣(x>0)D.y=(x<0)4.(3分)点A(3,n)关于y轴对称点的坐标为(﹣3,2),那么点A关于原点对称点的坐标是()A.3B.﹣3C.D.﹣5.(3分)若方程x2﹣3x﹣1=0的两根为x1,x2,则的值为()A.3B.﹣3C.D.6.(3分)在同坐标系中,函数(k≠0)与y=kx+k(k≠0)在同一坐标系中的大致图象是()A.B.C.D.7.(3分)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.8.(3分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.49.(3分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组10.(3分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是()A.2B.C.D.2.511.(3分)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10C.2≤k≤6D.2≤k≤12.(3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④二、填空题(本题有4小题,每小题3分,共12分.把答案填在答题卡上)13.(3分)若方程(m﹣1)+2mx﹣3=0是关于x的一元二次方程,则m=.14.(3分)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为.15.(3分)如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.则BE:CF的值为.16.(3分)大于1的正整数的三次方都可以分解为若干个连续奇数的和.如23=3+5,33=7+9+11,43=13+15+17+19.按此规律,若m3分解后,最后一个奇数为109,则m的值为.三、解答题(本大题有7题,其中第17题8分,第18题7分,第19题8分,第20题8分,第21题8分,第22题7分,第23题6分,共52分)17.(8分)解方程(1)x(x﹣1)=2(x﹣1);(2)x2+4x+2=0.18.(7分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部5000名司机中的部分司机后,整理相关数据并制作了右侧两个不完整的统计图:克服酒驾﹣﹣你认为哪一种方式更好?A.司机酒驾,乘客有责,让乘客帮助监督B.在车上张贴“请勿喝酒”的提醒标志C.签订“永不酒驾”保证书D.希望交警加大检查力度E.查出酒驾,追究就餐饭店的连带责任根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m=;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?19.(8分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?20.(8分)如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.21.(8分)一天晚上,小颖由路灯A下的B处向正东走到C处时,测得影子CD的长为1米,当她继续向正东走到D处时,测得此时影子DE的一端E到路灯A的仰角为45°,已知小颖的身高为1.5米,求那么路灯AB的高度是多少米?22.(7分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.23.(6分)已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.广东省深圳市南山区2015届九年级上学期期末数学试卷参考答案与试题解析一.选择题(本题有12小题,每小题3分,共36分,在每小题给出的选项中,只一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.2.(3分)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°考点:反证法.分析:熟记反证法的步骤,然后进行判断即可.解答:解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.点评:本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.(3分)下列函数中,y随x的增大而减少的是()A.y=B.y=C.y=﹣(x>0)D.y=(x<0)考点:反比例函数的性质.分析:根据反比例函数y=中k>0,在每一象限内y随着x的增大而减小;k<0每一象限内,y随着x的增大而增大求解.解答:解:∵反比例函数y=中k>0,在每一象限内y随着x的增大而减小,∴A、B、D错误,C正确.故选D.点评:本题考查了反比例函数的性质,重点考查反比例函数的增减性,属于基础题,比较简单.4.(3分)点A(3,n)关于y轴对称点的坐标为(﹣3,2),那么点A关于原点对称点的坐标是()A.3B.﹣3C.D.﹣考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点的特点得到n的值,进而根据关于原点对称的点的特点得到所求点的坐标即可.解答:解:∵点A(3,n)关于y轴对称的点的坐标为(﹣3,2),∴n=2,∴A坐标为(3,2),∴点A关于原点对称的坐标是(﹣3,﹣2).故选:B.点评:考查点的变换的知识;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数;两点关于原点对称,横纵坐标均互为相反数.5.(3分)若方程x2﹣3x﹣1=0的两根为x1,x2,则的值为()A.3B.﹣3C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到x1+x2=3,x1x2=﹣1,然后利用整体代入得方法计算.解答:解:∵方程x2﹣3x﹣1=0的两根为x1,x2,∴x1+x2=3,x1x2=﹣1,∴==﹣3,故选B.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.6.(3分)在同坐标系中,函数(k≠0)与y=kx+k(k≠0)在同一坐标系中的大致图象是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:首先由四个图象中一次函数的图象与y轴的交点在正半轴上,确定k的取值范围,然后根据k的取值范围得出反比例函数(k≠0)的图象.解答:解:由一次函数的图象与y轴的交点在正半轴上可知k>0,故函数y=kx+k的图象过一、二、三象限,反比例函数经过第一、三象限,所以可以排除A,B,D.故选C.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.(3分)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.考点:列表法与树状图法.专题:跨学科.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故选:A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.专题:几何图形问题.分析:连接AC与BD相交于O,根据正方形的性质求出OD=,然后根据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满足条件,故共有2条直线l.故选:B.点评:本题考查了正方形的性质,主要利用了正方形的对角线互相垂直平分,点D到O的距离小于是本题的关键.9.(3分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组