2014-2015学年山东省聊城市临清市八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列语句中,属于命题的是()A.作线段的垂直平分线B.等角的补角相等吗C.三角形是轴对称图形D.用三条线段去拼成一个三角形3.已知▱ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.284.在四边形ABCD中,O是对角线AC、BD的交点,能判定这个四边形为正方形的是()A.AD∥BC,∠B=∠DB.AC=BD,AB=CD,AD=BCC.OA=OC,OB=OD,AB=BCD.OA=OB=OC=OD,AC⊥BD5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠CB.AD⊥BCC.AD平分∠BACD.AB=2BD6.若样本x1,x2,x3,…xn的平均数是10,方差是2,则对于样本(x1+1),(x2+1),(x3+1),…,(xn+1),下列结论中正确的是()A.平均数为10,方差是2B.平均数是11,方差为3C.平均数为11,方差为2D.平均数为12,方差为47.A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种8.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°9.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点E,交AC于点D,则△BDC的周长为()A.13B.14C.15D.1210.如图所示,已知∠C=∠D=90°,AB=AE,增加下列一个条件(1)AC=AD,(2)BC=ED,(3)∠B=∠E,(4)∠1=∠2,其中能使△ABC≌△AED成立的条件有()A.4个B.3个C.2个D.1个11.如果关于x的方程无解,则m的值等于()A.﹣3B.﹣2C.﹣1D.312.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.cm2D.cm2二、填空题(每小题3分,共15分)13.若分式的值为0,则x的值等于.14.若,则=.15.如图所示,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为度.16.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为.17.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.三、解答题(本题共8小题,共69分)18.先化简代数式,求:当a=2时代数式值.19.解方程:(1)+3=(2)﹣=1.20.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.21.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:利用表中提供的数据,解答下列问题:(1)填写完成下表:平均成绩中位数众数王军8079.5张成8080(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差=33.2,请你帮助张老师计算张成10次测验成绩的方差.22.已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.23.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次王军68807879817778848392张成8680758385777980807524.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.25.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.2014-2015学年山东省聊城市临清市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念对各图形分析判断后即可得解.解答:解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形.所以轴对称图形有第一个与第四个共2个图形.故选B.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列语句中,属于命题的是()A.作线段的垂直平分线B.等角的补角相等吗C.三角形是轴对称图形D.用三条线段去拼成一个三角形考点:命题与定理.分析:分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解答:解:C是用语言可以判断真假的陈述句,是命题,A、B、D均不是可以判断真假的陈述句,都不是命题.故选:C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.3.已知▱ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.28考点:平行四边形的性质.专题:计算题.分析:根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.点评:本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.4.在四边形ABCD中,O是对角线AC、BD的交点,能判定这个四边形为正方形的是()A.AD∥BC,∠B=∠DB.AC=BD,AB=CD,AD=BCC.OA=OC,OB=OD,AB=BCD.OA=OB=OC=OD,AC⊥BD考点:正方形的判定.分析:根据正方形的判定对各个选项进行分析.解答:解:因为对角线相等,且互相垂直平分的四边形是正方形,故选D.点评:此题主要考查正方形的判定:对角线相等的菱形是正方形.5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠CB.AD⊥BCC.AD平分∠BACD.AB=2BD考点:等腰三角形的性质.专题:几何图形问题.分析:此题需对每一个选项进行验证从而求解.解答:解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.点评:此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质6.若样本x1,x2,x3,…xn的平均数是10,方差是2,则对于样本(x1+1),(x2+1),(x3+1),…,(xn+1),下列结论中正确的是()A.平均数为10,方差是2B.平均数是11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4考点:方差;算术平均数.分析:利用平均数与方差的性质分别分析得出即可.解答:解:∵样本x1,x2,…,xn的平均数为10,方差为2,∴x1+1,x2+1,…,xn+1的平均数为10+1=11,方差不变为2.故选:C.点评:本题考查了方差与平均数的定义,熟练掌握方差的意义是解题关键.7.A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种考点:平行四边形的判定.分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据判定方法依次组合即可.解答:解:根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C.点评:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.8.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°考点:三角形的外角性质;平行线的性质.专题:计算题.分析:先根据两直线平行,同旁内角互补,求出∠4,再求出∠2的邻补角∠5,然后利用三角形外角性质即可求出∠3.解答:解:∵l∥m,∠1=115°,∴∠4=180°﹣∠1=180°﹣115°=65°,又∠5=180°﹣∠2=180°﹣95°=85°,∴∠3=∠4+∠5=65°+85°=150°.故选D.点评:本题利用平行线的性质和三角形外角的性质求解.9.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点E,交AC于点D,则△BDC的周长为()A.13B.14C.15D.12考点:线段垂直平分线的性质;等腰三角形的性质.分析:先根据等腰△ABC的周长为21,底边BC=5得出其腰长,再根据线段垂直平分线的性质即可得出结论.解答:解:∵等腰△ABC的周长为21,底边BC=5,∴AB=AC==8.∵AB的垂直平分线DE交AB于点E,∴AD=BD,即AD+CD=BD+CD=AC,∴△BDC的周长=BC+(AD+CD)=BC+AC=5+5=13.故选A.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.如图所示,已知∠C=∠D=90°,AB=AE,增加下列一个条件(1)AC=AD,(2)BC=ED,(3)∠B=∠E,(4)∠1=∠2,其中能使△ABC≌△AED成立的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:分别根据“HL”和“AAS”对所添加的条件进行判断.解答:解:∵∠C=∠D=90°,AB=AE,∴当AC=AD时,可根据“HL”判断△ABC≌△AED;当BC=ED时,可根据“HL”判断△ABC≌△AED;当∠B=∠C时,可根据“AAS”判断△ABC≌△AED;当∠1=∠2时,则∠BAC=∠EAD,可根据“AAS”判断△ABC≌△AED.故选A.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.11.如果关于x的方程无解,则m的值等于()A.﹣3B.﹣2C.﹣1D.3考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得,2=x﹣3﹣m解得,x=5+m当分母x﹣3=0即x=3时方程无解也就是5+m=3时方程无解则m=﹣2故选B.点评:本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程