2015-2016学年福建省泉州市惠安县八年级(上)第一次月考数学试卷一、选择题:(本大题有7小题,每小题3分,共21分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6B.带根号的数都是无理数C.27的立方根是±3D.立方根等于﹣1的实数是﹣12.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a23.在实数,0,,﹣3.14,π,,0.2020020002…中,无理数的个数是()A.2B.3C.4D.54.如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.D.5.若一个正数的平方根是2a+1和﹣a+2,则a=()A.1B.3C.﹣3D.﹣16.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣67.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2二、填空题(本大题有10小题,每小题4分,共40分.)8.①36的算术平方根是;②的立方根是.9.计算:①(﹣a)2•(﹣a)3=;②(﹣3x2)3=.10.①比较大小:32;②化简|﹣3|=.11.计算:﹣3x•(2x2﹣x+4)=;82015×(﹣)2015=.12.如果x、y为实数,且,则x+y=.13.若am=3,an=2,则am﹣2n的值为.14.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是.15.如果x2﹣Mx+9是一个完全平方式,则M的值是.16.如图,数轴上点A表示2,点B表示,点B关于点A的对称点是点C,则点C所表示的数是.17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的序号是.(把在横线上填上你认为所有正确结论的序号)三、解答题18.计算(1)++(2)(n2)3•(n4)2(3)2a2(3ab2﹣5ab3).(4)a•(﹣a)3÷(﹣a)4(5)(﹣x+4y)(﹣x﹣4y)(6)(x+2y)(x2﹣2xy+4y2)19.已知2a=5,2b=3,求2a+b+3的值.20.(1)解方程:3x2﹣27=0(2)已知22x+1+4x=48,求x的值.21.先化简,后求值:已知:[(x﹣2y)2﹣2y(2y﹣x)]÷2,其中x=1,y=2.22.已知x+y=4,xy=﹣12,求(1)x2+y2的值;(2)求(x﹣y)2的值.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.用四块长为acm、宽为bcm的矩形材料(如图1)拼成一个大矩形(如图2)或大正方形(如图3),中间分别空出一个小矩形A和一个小正方形B.(1)求(如图1)矩形材料的面积;(用含a,b的代数式表示)(2)通过计算说明A、B的面积哪一个比较大;(3)根据(如图4),利用面积的不同表示方法写出一个代数恒等式.2015-2016学年福建省泉州市惠安县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题有7小题,每小题3分,共21分)1.下列说法中,正确的是()A.(﹣6)2的平方根是﹣6B.带根号的数都是无理数C.27的立方根是±3D.立方根等于﹣1的实数是﹣1考点:立方根;平方根;无理数.分析:根据平方根及立方根的定义,结合各选项进行判断即可.解答:解:A、(﹣6)2=36,36的平方根是±6,原说法错误,故本选项错误;B、带根号的数不一定都是无理数,例如是有理数,故本选项错误;C、27的立方根是3,故本选项错误;D、立方根等于﹣1的实数是﹣1,说法正确,故本选项正确;故选D.点评:本题考查了立方根、平方根及无理数的知识,注意熟练掌握各知识点.2.下列运算正确的是()A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方及同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、a3•a2=a5,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、a8÷a2=a6,故本选项错误;D、a+a=2a,故本选项错误.故选B.点评:本题考查了幂的乘方、同底数幂的乘除法及合并同类项的法则,属于基础题,掌握各部分的运算法则是关键.3.在实数,0,,﹣3.14,π,,0.2020020002…中,无理数的个数是()A.2B.3C.4D.5考点:无理数.分析:根据无理数的三种形式求解.解答:解:无理数有:,π,0.2020020002…,共3个.故选B.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.D.考点:勾股定理;实数与数轴.分析:本题利用实数与数轴的关系及直角三角形三边的关系解答.解答:解:由勾股定理可知,∵OA=,∴点A表示的数是.故A,B,C错误,应选D.点评:本题很简单,关键运用勾股定理计算出该数,在数轴上表示.5.若一个正数的平方根是2a+1和﹣a+2,则a=()A.1B.3C.﹣3D.﹣1考点:平方根.专题:计算题.分析:根据一个正数的平方根互为相反数得到2a+1+(﹣a+2)=0,然后解关于a的方程即可.解答:解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1+(﹣a+2)=0,∴a=﹣3.故选C.点评:本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a≥0);零的平方根为零.6.如果(x﹣2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6B.p=1,q=﹣6C.p=1,q=6D.p=5,q=﹣6考点:多项式乘多项式.专题:计算题.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出p与q的值即可.解答:解:∵(x﹣2)(x+3)=x2+x﹣6=x2+px+q,∴p=1,q=﹣6,故选B点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2考点:完全平方公式的几何背景.分析:根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.解答:解:空白部分的面积:(a﹣b)2,还可以表示为:a2﹣2ab+b2,所以,此等式是(a﹣b)2=a2﹣2ab+b2.故选C.点评:本题考查了完全平方公式的几何背景,利用两种方法表示出空白部分的面积是解题的关键.二、填空题(本大题有10小题,每小题4分,共40分.)8.①36的算术平方根是6;②的立方根是2.考点:立方根;算术平方根.分析:依据算术平方根的定义和立方根的定义计算即可.解答:解:①∵62=36,∴36的算术平方根是6.②∵82=64,∴=8.∵23=8,∴8的立方根是2.∴的立方根是2.故答案为:①6;②2.点评:本题主要考查的是算术平方根和立方根的定义,先求得=8是解题的关键.9.计算:①(﹣a)2•(﹣a)3=﹣a5;②(﹣3x2)3=﹣27x6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和积的乘方运算法则求解.解答:解:①原式=﹣a5;②原式=﹣27x6.故答案为:﹣a5;﹣27x6.点评:本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.10.①比较大小:3>2;②化简|﹣3|=3﹣.考点:实数大小比较;实数的性质.分析:①先把根号外的移到根号内,再比较被开方数的大小,即可得出答案;②根据绝对值的性质直接去掉绝对值即可.解答:解:①∵3=,2=,∴>,∴3>2;②|﹣3|=3﹣;故答案为:>,3﹣.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.11.计算:﹣3x•(2x2﹣x+4)=﹣6x3+3x2﹣12x;82015×(﹣)2015=﹣1.考点:单项式乘多项式;幂的乘方与积的乘方.分析:根据单项式乘多项式的法则分别进行计算即可;把要求的式子进行整理得出82015×(﹣)2015=[8×(﹣)]2015,再进行计算即可.解答:解:﹣3x•(2x2﹣x+4)=﹣6x3+3x2﹣12x;82015×(﹣)2015=[8×(﹣)]2015=﹣1.故答案为:﹣6x3+3x2﹣12x,﹣1.点评:此题考查了单项式乘多项式以及幂的乘方与积的乘方,熟练数掌握运算法则是解题的关键,第二个要用简便方法计算.12.如果x、y为实数,且,则x+y=0.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,x+y=﹣2+2=0.故答案为:0.点评:本题考查了平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.13.若am=3,an=2,则am﹣2n的值为.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法法则和幂的乘方的运算法则求解.解答:解:am﹣2n=3÷4=.故答案为:.点评:本题考查了同底数幂的除法和幂的乘方的知识,掌握运算法则是解答本题的关键.14.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.考点:平方差公式.专题:计算题.分析:由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.解答:解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.点评:本题考查了平方差公式,由题设中代数式x+y,x﹣y的值,将代数式适当变形,然后利用“整体代入法”求代数式的值.15.如果x2﹣Mx+9是一个完全平方式,则M的值是±6.考点:完全平方式.专题:计算题.分析:利用完全平方公式的结构特征判断即可得到M的值.解答:解:∵x2﹣Mx+9是一个完全平方式,∴﹣M=±6,解得:M=±6,故答案为:±6.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,数轴上点A表示2,点B表示,点B关于点A的对称点是点C,则点C所表示的数是4﹣.考点:实数与数轴.分析:根据中心对称的点的坐标特征列式计算即可得解.解答:解:设点C表示的数为x,∵点B关于点A的对称点是点C,∴=2,解得x=4﹣.故答案为:4﹣.点评:本题考查了实数与数轴,主要利用了中心对称点的坐标特征.17.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几个结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗a)+(b⊗b)=2ab;④若a⊗b=0,则a=0.其中正确结论的序号是①③.(把在