【解析版】田家炳中学2014-2015年八年级上第一次月考试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

广东省肇庆市田家炳中学2014-2015学年八年级上学期第一次月考数学试卷一、选择题(10x3=30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cmB.4cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm2.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17B.22C.17或22D.133.(3分)若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9B.8C.7D.64.(3分)如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cmB.2cmC.3cmD.4cm6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BE=3,则△BDE的周长是()A.15B.12C.9D.67.(3分)已知△ABC中,AB=5,AC=7,则BC边上的中线a的取值范围是()A.1<a<6B.5<a<7C.2<a<12D.10<a<148.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对9.(3分)在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°二、填空题(6x3=18分)11.(3分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带去.12.(3分)在△ABC中,若∠A=∠B=∠C,则△ABC是三角形.13.(3分)能将三角形面积平分的是三角形的线.14.(3分)如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.15.(3分)△ABC中,∠A=100°,∠B、∠C的角平分线交于点O,则∠BOC=.16.(3分)如图所示,在△ABC中,BD,CE分别是AC、AB边上的高,且BD与CE相交于点O,如果∠BOC=135°,那么∠A的度数为°.三、解答题(一)(5x3=15分)17.(5分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.18.(5分)如图,在△ABC中,∠B=44°,∠C=72°,AD是△ABC的角平分线,(1)求∠BAC的度数;(2)求∠ADC的度数.19.(5分)如图所示,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB.四、解答题(二)(7x3=21分)20.(7分)如图AB、CD相交于点O,AO=BO,AC∥DB.那么OC与OD相等吗?说明你的理由.小明的解题过程如下,请你说明每一步的理由.解:OC=OD,理由如下:∵AC∥DB(已知)∴∠A=∠B∠C=∠D在△AOC和△BOD中∴△AOC≌△BOD∴OC=OD.21.(7分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.22.(7分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.五、解答题(三)(8x2=16分)23.(8分)如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.(1)求证:∠FBD=∠CAD;(2)求证:BE⊥AC.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.广东省肇庆市田家炳中学2014-2015学年八年级上学期第一次月考数学试卷参考答案与试题解析一、选择题(10x3=30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.3cm,4cm,5cmB.4cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm考点:三角形三边关系.分析:根据三角形任意两边的和大于第三边,进行分析判断.解答:解:A、4+3>5,能组成三角形;B、6+4=10,不能组成三角形;C、1+1=2<3,不能组成三角形;D、3+4=7<9,不能组成三角形;故选:A.点评:本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.2.(3分)等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17B.22C.17或22D.13考点:等腰三角形的性质.分析:题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.(3分)若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9B.8C.7D.6考点:多边形内角与外角.分析:多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.解答:解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.(3分)如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.解答:解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.5.(3分)如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cmB.2cmC.3cmD.4cm考点:全等三角形的性质.分析:根据全等三角形性质求出EF=BC=5cm,求出CF,代入EF﹣CF即可求出答案.解答:解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选C.点评:本题考查了全等三角形的性质得应用,关键是求出BC和CF的长,注意:全等三角形的对应边相等.6.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BE=3,则△BDE的周长是()A.15B.12C.9D.6考点:角平分线的性质.分析:由△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,根据角平分线的性质,即可得DE=CD,继而可求得△BDE的周长是:BE+BC,则可求得答案.解答:解:∵△ABC中,∠C=90°,∴AC⊥CD,∵AD平分∠BAC,DE⊥AB,∴DE=CD,∵BC=9,BE=3,∴△BDE的周长是:BE+BD+DE=BE+BD+CD=BE+BC=3+9=12.故选B.点评:此题考查了角平分线的性质.此题比较简单,注意角平分线的性质:角的平分线上的点到角的两边的距离相等.7.(3分)已知△ABC中,AB=5,AC=7,则BC边上的中线a的取值范围是()A.1<a<6B.5<a<7C.2<a<12D.10<a<14考点:全等三角形的判定与性质;三角形三边关系.分析:延长AE到D,使AE=DE,通过证明△AEC≌△DEB△,可得BD=AC,根据三角形的三边关系,得出即可.解答:解:延长AE到D,使AE=DE,连接BD.∵AE是中线,∴BE=CE,∠AEC=∠DEB,∴△AEC≌△DEB△(SAS),∴BD=AC=7,又AE=a,∴2<2a<12,∴1<a<6.故选A.点评:本题主要考查了全等三角形的判定与性质和三角形的三边关系,三角形中任意两边之和大于第三边,任意两边之差小于第三边.8.(3分)如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等三角形共有()A.四对B.三对C.二对D.一对考点:全等三角形的判定.分析:根据图形找出全等的三角形即可得解.解答:解:如图,全等的三角形有:△ABE≌△ACD,△BDO≌△CEO,△BCD≌△CBE,共三对.故选B.点评:本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法并准确识图是解题的关键.9.(3分)在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′考点:全等三角形的判定.分析:根据全等三角形的判定方法对各个选项进行分析,从而得到答案.解答:解:A,正确,符合SAS判定;B,不正确,因为边BC与B′C′不是∠A与∠A′的一边,所以不能推出两三角形全等;C,正确,符合AAS判定;D,正确,符合ASA判定;故选B.点评:此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有:AAS,SAS,SSS,HL等.要根据已知与判断方法进行思考.10.(3分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()A.150°B.40°C.80°D.90°考点:平行四边形的性质.分析:由AB=DC,AD=BC可知四边形ABCD为平行四边形,根据BF=DE,可证△ADE≌△CBF,则∠BCF=∠DAE,因为∠AEB=120°、∠ADB=30°,所以可推得∠BCF=90°.解答:解:∵AB=DC,AD=BC,∴四边形ABCD为平行四边形,∴∠ADE=∠CBF,∵BF=DE,∴△ADE≌△CBF,∴∠BCF=∠DAE,∵∠DAE=180°﹣∠ADB﹣∠AED,∵∠AED=180°﹣∠AEB=60°,∠ADB=30°,∴∠BCF=90°.故选D.点评:本题主要考查了平行四边形的性质,运用平行四边形的性质解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.二、填空题(6x3=18分)11.(3分)如图,某同学将三角形玻璃打碎,现要到玻璃店配一块完全相同的玻璃,应带③去.考点:全等三角形的应用.分析:根据全等三角形的判定方法,在打碎的三块中可以采用排除法进行分析从而确定最后的答案.解答:解:第一块,仅保留了原三角形的一个角和部分边,不符合全等三角形的判定方法;第二块,仅保留了原三角形的一部分边,所以此块玻璃也不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故答案为:③.点评:本题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.在解答时要求对全等三角形的判定方法的运用灵活.12.(3分)在△ABC中,若∠A=∠

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功