福建省南平市武夷山三中2014-2015学年八年级上学期第一次月考数学试卷一、选择题(每题3分,共30分)1.(3分)下列图形具有稳定性的是()A.正方形B.三角形C.长方形D.平行四边形2.(3分)下面四个图形中,线段BE是△ABC中AC边上的高是()A.B.C.D.3.(3分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cmB.6cmC.5cmD.4cm4.(3分)等腰三角形一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°5.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°6.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.77.(3分)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)8.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块9.(3分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.10.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA二、填空题(每题3分,共24分)11.(3分)如图,∠1=.12.(3分)如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是.13.(3分)如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.14.(3分)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.15.(3分)如图,小明从点A出发沿直线向前走10m,向左转30°,然后继续向前走10m,再向左转30°,他以同样的方法继续走下去,当他第一次回到出发地A点时,一共走了m.16.(3分)如图,已知∠1=∠2,请你添加一个条件:,使△ABD≌△ACD.17.(3分)从10边形的一个顶点画所有的对角线,一共能画.18.(3分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.三、解答题(共46分)19.(6分)在△ABC中,∠B=3∠A,∠C=5∠A,求△ABC的三个内角度数.20.(6分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.21.(6分)如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数.22.(6分)如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.23.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.24.(8分)已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.25.(8分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.福建省南平市武夷山三中2014-2015学年八年级上学期第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列图形具有稳定性的是()A.正方形B.三角形C.长方形D.平行四边形考点:三角形的稳定性.分析:根据三角形具有稳定性解答.解答:解:正方形,三角形,长方形,平行四边形中只有三角形具有稳定性.故选B.点评:本题考查三角形的稳定性和四边形的不稳定性的性质.2.(3分)下面四个图形中,线段BE是△ABC中AC边上的高是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:根据三角形高线的定义解答即可.解答:解:△ABC中AC边上的高是过点B垂直于AC边的线段,只有A选项正确.故选A.点评:本题考查了三角形的高线的定义,是基础题,熟记高线的概念是解题的关键.3.(3分)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cmB.6cmC.5cmD.4cm考点:三角形三边关系.分析:此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.解答:解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.点评:本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.4.(3分)等腰三角形一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°考点:等腰三角形的性质;三角形内角和定理.专题:分类讨论.分析:分两种情况:当50°角为等腰三角形的顶角时,可得出顶角的度数;当50°角为等腰三角形的底角时,可得两底角的度数,根据三角形的内角和定理可求出此时等腰三角形的顶角,综上,得到等腰三角形顶角的所有可能值.解答:解:分两种情况:当50°角为等腰三角形的顶角时,此时等腰三角形的顶角50°;当50°角为等腰三角形的底角时,此时等腰三角形的顶角为:180°﹣50°×2=80°,综上,等腰三角形的顶角为50°或80°.故选D.点评:此题考查了等腰三角形的性质,以及三角形的内角和定理,利用了分类讨论的数学思想,是一道易错题.本题有两解,学生做题时注意不要漏解.5.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°考点:角的计算.分析:因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.解答:解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选D.点评:本题考查了角度的计算问题,在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.6.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4B.5C.6D.7考点:多边形内角与外角.分析:多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.解答:解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.点评:本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.7.(3分)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)考点:作图—基本作图;全等三角形的判定与性质.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.8.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块考点:全等三角形的应用.分析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解答:解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.点评:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.9.(3分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.考点:全等三角形的判定.分析:根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.解答:解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.10.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.二、填空题(每题3分,共24分)11.(3分)如图,∠1=120°.考点:三角形的外角性质.专题:计算题.分析:根据三角形的外角性质,即三角形的一个外角等于与它不相邻的两个内角之和,可直接求出∠1=(180°﹣140°)+80°=120°.解答:解:∠1=(180°﹣140°)+80°=120°.点评:本题主要考查三角形的外角性质及邻补角的定义.解题的关键是熟练掌握三角形的外角性质,即三角形的一个外角等于与它不相邻的两个内角之和.12.(3分)如果一个三角形的两边长分别是2cm和7cm,